随机学习自动机的遗传适应性研究

Mark N Howell, T. Gordon
{"title":"随机学习自动机的遗传适应性研究","authors":"Mark N Howell, T. Gordon","doi":"10.1109/CEC.2000.870767","DOIUrl":null,"url":null,"abstract":"Both stochastic learning automata and genetic algorithms have previously been shown to have valuable global optimisation properties. Learning automata have however been criticised for their perceived slow rate of convergence. In this paper these two techniques are combined to provide an increase in the rate of convergence for the learning automata and also to improve the escape from local minima. The technique separates the genotype and phenotype properties of the genetic algorithm and has the advantage that the degree of convergence can be quickly ascertained. It also provides the genetic algorithm with a stopping rule and enables bounds to be given on the parameter values obtained.","PeriodicalId":218136,"journal":{"name":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the genetic adaptation of stochastic learning automata\",\"authors\":\"Mark N Howell, T. Gordon\",\"doi\":\"10.1109/CEC.2000.870767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Both stochastic learning automata and genetic algorithms have previously been shown to have valuable global optimisation properties. Learning automata have however been criticised for their perceived slow rate of convergence. In this paper these two techniques are combined to provide an increase in the rate of convergence for the learning automata and also to improve the escape from local minima. The technique separates the genotype and phenotype properties of the genetic algorithm and has the advantage that the degree of convergence can be quickly ascertained. It also provides the genetic algorithm with a stopping rule and enables bounds to be given on the parameter values obtained.\",\"PeriodicalId\":218136,\"journal\":{\"name\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2000.870767\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2000.870767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

随机学习自动机和遗传算法都已被证明具有有价值的全局优化特性。然而,学习自动机因其缓慢的收敛速度而受到批评。本文将这两种技术结合起来,以提高学习自动机的收敛速度,并改善从局部极小值的逃脱。该技术分离了遗传算法的基因型和表型特性,并具有快速确定收敛程度的优点。它还为遗传算法提供了一个停止规则,并允许对得到的参数值给出边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the genetic adaptation of stochastic learning automata
Both stochastic learning automata and genetic algorithms have previously been shown to have valuable global optimisation properties. Learning automata have however been criticised for their perceived slow rate of convergence. In this paper these two techniques are combined to provide an increase in the rate of convergence for the learning automata and also to improve the escape from local minima. The technique separates the genotype and phenotype properties of the genetic algorithm and has the advantage that the degree of convergence can be quickly ascertained. It also provides the genetic algorithm with a stopping rule and enables bounds to be given on the parameter values obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信