支持矢量Gmms说话人验证

N. Dehak, G. Chollet
{"title":"支持矢量Gmms说话人验证","authors":"N. Dehak, G. Chollet","doi":"10.1109/ODYSSEY.2006.248131","DOIUrl":null,"url":null,"abstract":"This article presents a new approach using the discrimination power of support vectors machines (SVM) in combination with Gaussian mixture models (GMM) for automatic speaker verification (ASV). In this combination SVMs are applied in the GMM model space. Each point of this space represents a GMM speaker model. The kernel which is used for the SVM allows the computation of a similarity between GMM models. It was calculated using the Kullback-Leibler (KL) divergence. The results of this new approach show a clear improvement compared to a simple GMM system on the NIST2005 Speaker Recognition Evaluation primary task","PeriodicalId":215883,"journal":{"name":"2006 IEEE Odyssey - The Speaker and Language Recognition Workshop","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Support Vector Gmms for Speaker Verification\",\"authors\":\"N. Dehak, G. Chollet\",\"doi\":\"10.1109/ODYSSEY.2006.248131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a new approach using the discrimination power of support vectors machines (SVM) in combination with Gaussian mixture models (GMM) for automatic speaker verification (ASV). In this combination SVMs are applied in the GMM model space. Each point of this space represents a GMM speaker model. The kernel which is used for the SVM allows the computation of a similarity between GMM models. It was calculated using the Kullback-Leibler (KL) divergence. The results of this new approach show a clear improvement compared to a simple GMM system on the NIST2005 Speaker Recognition Evaluation primary task\",\"PeriodicalId\":215883,\"journal\":{\"name\":\"2006 IEEE Odyssey - The Speaker and Language Recognition Workshop\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Odyssey - The Speaker and Language Recognition Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ODYSSEY.2006.248131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Odyssey - The Speaker and Language Recognition Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ODYSSEY.2006.248131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

本文提出了一种利用支持向量机(SVM)的识别能力与高斯混合模型(GMM)相结合的自动说话人验证方法。在这种组合中,支持向量机被应用于GMM模型空间。这个空间的每个点代表一个GMM扬声器模型。用于支持向量机的核允许计算GMM模型之间的相似度。它是用Kullback-Leibler (KL)散度计算的。在NIST2005说话人识别评价的主要任务上,与简单的GMM系统相比,该方法有明显的改进
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Support Vector Gmms for Speaker Verification
This article presents a new approach using the discrimination power of support vectors machines (SVM) in combination with Gaussian mixture models (GMM) for automatic speaker verification (ASV). In this combination SVMs are applied in the GMM model space. Each point of this space represents a GMM speaker model. The kernel which is used for the SVM allows the computation of a similarity between GMM models. It was calculated using the Kullback-Leibler (KL) divergence. The results of this new approach show a clear improvement compared to a simple GMM system on the NIST2005 Speaker Recognition Evaluation primary task
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信