带概率约束的设施选址问题的切割平面方法

A. Suzuki, Tomoki Fukuba, T. Shiina
{"title":"带概率约束的设施选址问题的切割平面方法","authors":"A. Suzuki, Tomoki Fukuba, T. Shiina","doi":"10.1109/IIAI-AAI50415.2020.00142","DOIUrl":null,"url":null,"abstract":"This study shows the effectiveness of the cutting plane method by applying it to the facility location problem with probabilistic constraints. Probabilistic constraints are those that should be satisfied at a certain probabilistic level and can consider the uncertainty of the parameters involved in the problem. Problems with such probabilistic constraints are generally difficult to solve. Therefore, based on previous research, we consider transforming a problem with probabilistic constraints into a 0–1 mixed integer programming problem under special conditions. Thereafter, we introduce the cutting plane method using a valid inequality of the feasible region.","PeriodicalId":188870,"journal":{"name":"2020 9th International Congress on Advanced Applied Informatics (IIAI-AAI)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cutting plane method for the facility location problem with probabilistic constraints\",\"authors\":\"A. Suzuki, Tomoki Fukuba, T. Shiina\",\"doi\":\"10.1109/IIAI-AAI50415.2020.00142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study shows the effectiveness of the cutting plane method by applying it to the facility location problem with probabilistic constraints. Probabilistic constraints are those that should be satisfied at a certain probabilistic level and can consider the uncertainty of the parameters involved in the problem. Problems with such probabilistic constraints are generally difficult to solve. Therefore, based on previous research, we consider transforming a problem with probabilistic constraints into a 0–1 mixed integer programming problem under special conditions. Thereafter, we introduce the cutting plane method using a valid inequality of the feasible region.\",\"PeriodicalId\":188870,\"journal\":{\"name\":\"2020 9th International Congress on Advanced Applied Informatics (IIAI-AAI)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 9th International Congress on Advanced Applied Informatics (IIAI-AAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IIAI-AAI50415.2020.00142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 9th International Congress on Advanced Applied Informatics (IIAI-AAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIAI-AAI50415.2020.00142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

将切割平面方法应用于具有概率约束的设施选址问题,验证了该方法的有效性。概率约束是指在一定的概率水平上需要满足的约束,并且能够考虑到问题所涉及的参数的不确定性。具有这种概率约束的问题通常很难解决。因此,在前人研究的基础上,我们考虑将具有概率约束的问题转化为特殊条件下的0-1混合整数规划问题。然后,利用可行域的一个有效不等式,引入了切割平面法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cutting plane method for the facility location problem with probabilistic constraints
This study shows the effectiveness of the cutting plane method by applying it to the facility location problem with probabilistic constraints. Probabilistic constraints are those that should be satisfied at a certain probabilistic level and can consider the uncertainty of the parameters involved in the problem. Problems with such probabilistic constraints are generally difficult to solve. Therefore, based on previous research, we consider transforming a problem with probabilistic constraints into a 0–1 mixed integer programming problem under special conditions. Thereafter, we introduce the cutting plane method using a valid inequality of the feasible region.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信