Softmax sLDA的混合物

Xiaoxu Li, Junyu Zeng, Xiaojie Wang, Yixin Zhong
{"title":"Softmax sLDA的混合物","authors":"Xiaoxu Li, Junyu Zeng, Xiaojie Wang, Yixin Zhong","doi":"10.1109/ICDM.2011.103","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new variant of supervised Latent Dirichlet Allocation(sLDA): mixture of soft max sLDA, for image classification. Ensemble classification methods can combine multiple weak classifiers to construct a strong classifier. Inspired by the ensemble idea, we try to improve sLDA model using the idea. The mixture of soft max model is a probabilistic ensemble classification model, it can fit the training data and class label well. We embed the mixture of soft max model into LDA model under the framwork of sLDA, and construct an ensemble supervised topic model for image classification. Meanwhile, we derive an elegant parameters estimation algorithm based on variational EM method, and give a simple and efficient approximation method for classifying a new image. Finally, we demonstrate the effectiveness of our model by comparing with some existing approaches on two real world datasets. The results show that our model enhances classification accuracy by 7% on the 1600-image Label Me dataset and 9% on the 1791-image UIUC-Sport dataset.","PeriodicalId":106216,"journal":{"name":"2011 IEEE 11th International Conference on Data Mining","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mixture of Softmax sLDA\",\"authors\":\"Xiaoxu Li, Junyu Zeng, Xiaojie Wang, Yixin Zhong\",\"doi\":\"10.1109/ICDM.2011.103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new variant of supervised Latent Dirichlet Allocation(sLDA): mixture of soft max sLDA, for image classification. Ensemble classification methods can combine multiple weak classifiers to construct a strong classifier. Inspired by the ensemble idea, we try to improve sLDA model using the idea. The mixture of soft max model is a probabilistic ensemble classification model, it can fit the training data and class label well. We embed the mixture of soft max model into LDA model under the framwork of sLDA, and construct an ensemble supervised topic model for image classification. Meanwhile, we derive an elegant parameters estimation algorithm based on variational EM method, and give a simple and efficient approximation method for classifying a new image. Finally, we demonstrate the effectiveness of our model by comparing with some existing approaches on two real world datasets. The results show that our model enhances classification accuracy by 7% on the 1600-image Label Me dataset and 9% on the 1791-image UIUC-Sport dataset.\",\"PeriodicalId\":106216,\"journal\":{\"name\":\"2011 IEEE 11th International Conference on Data Mining\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 11th International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2011.103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 11th International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2011.103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种新的有监督潜狄利克雷分配方法(sLDA):混合软最大潜狄利克雷分配方法,用于图像分类。集成分类方法可以将多个弱分类器组合成一个强分类器。受集成思想的启发,我们尝试用集成思想改进sLDA模型。混合软极大值模型是一种概率集成分类模型,它能很好地拟合训练数据和类标号。在sLDA框架下,将混合软最大模型嵌入到LDA模型中,构建了一个集成监督主题图像分类模型。同时,我们推导了一种基于变分EM方法的参数估计算法,并给出了一种简单有效的新图像分类近似方法。最后,我们通过在两个真实世界的数据集上与现有的一些方法进行比较,证明了我们模型的有效性。结果表明,我们的模型在1600张Label Me数据集上的分类准确率提高了7%,在1791张UIUC-Sport数据集上的分类准确率提高了9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mixture of Softmax sLDA
In this paper, we propose a new variant of supervised Latent Dirichlet Allocation(sLDA): mixture of soft max sLDA, for image classification. Ensemble classification methods can combine multiple weak classifiers to construct a strong classifier. Inspired by the ensemble idea, we try to improve sLDA model using the idea. The mixture of soft max model is a probabilistic ensemble classification model, it can fit the training data and class label well. We embed the mixture of soft max model into LDA model under the framwork of sLDA, and construct an ensemble supervised topic model for image classification. Meanwhile, we derive an elegant parameters estimation algorithm based on variational EM method, and give a simple and efficient approximation method for classifying a new image. Finally, we demonstrate the effectiveness of our model by comparing with some existing approaches on two real world datasets. The results show that our model enhances classification accuracy by 7% on the 1600-image Label Me dataset and 9% on the 1791-image UIUC-Sport dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信