数据驱动的无线传感器网络故障节点检测方案

Muhammad Royyan, Joong-Hyuk Cha, Jae-Min Lee, Dong-Seong Kim
{"title":"数据驱动的无线传感器网络故障节点检测方案","authors":"Muhammad Royyan, Joong-Hyuk Cha, Jae-Min Lee, Dong-Seong Kim","doi":"10.1109/WD.2017.7918145","DOIUrl":null,"url":null,"abstract":"In this paper, a faulty node detection scheme with a hybrid algorithm using a Markov chain model that performs collective monitoring of wireless sensor networks is proposed. Mostly wireless sensor networks are large-scale systems, heavily noised, and the system workload is unfairly distributed among the master node and slave nodes. Hence, the master node may not easily detect a faulty slave node. In this paper, a more accurate faulty node detection scheme using a Markov chain model is investigated. Each slave node's condition can be divided into three states by probability calculation: Good-,Warning-, and Bad-state. Using this information, the master node can predicts the area in which an error frequently occurs. Simulation results show that the proposed method can improve the reliability of faulty node detection and the miss detection rate for a Wireless Sensor Networks.","PeriodicalId":179998,"journal":{"name":"2017 Wireless Days","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Data-driven faulty node detection scheme for Wireless Sensor Networks\",\"authors\":\"Muhammad Royyan, Joong-Hyuk Cha, Jae-Min Lee, Dong-Seong Kim\",\"doi\":\"10.1109/WD.2017.7918145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a faulty node detection scheme with a hybrid algorithm using a Markov chain model that performs collective monitoring of wireless sensor networks is proposed. Mostly wireless sensor networks are large-scale systems, heavily noised, and the system workload is unfairly distributed among the master node and slave nodes. Hence, the master node may not easily detect a faulty slave node. In this paper, a more accurate faulty node detection scheme using a Markov chain model is investigated. Each slave node's condition can be divided into three states by probability calculation: Good-,Warning-, and Bad-state. Using this information, the master node can predicts the area in which an error frequently occurs. Simulation results show that the proposed method can improve the reliability of faulty node detection and the miss detection rate for a Wireless Sensor Networks.\",\"PeriodicalId\":179998,\"journal\":{\"name\":\"2017 Wireless Days\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Wireless Days\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WD.2017.7918145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Wireless Days","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WD.2017.7918145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种基于马尔可夫链模型的混合算法的故障节点检测方案,用于无线传感器网络的集体监测。大多数无线传感器网络是大型系统,噪声严重,系统工作负载在主节点和从节点之间分配不公平。因此,主节点可能不容易检测到故障的从节点。本文研究了一种基于马尔可夫链模型的故障节点检测方法。每个从节点的状态可以通过概率计算分为三种状态:良好、警告和坏状态。使用这些信息,主节点可以预测经常发生错误的区域。仿真结果表明,该方法可以提高无线传感器网络故障节点检测的可靠性和脱靶率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-driven faulty node detection scheme for Wireless Sensor Networks
In this paper, a faulty node detection scheme with a hybrid algorithm using a Markov chain model that performs collective monitoring of wireless sensor networks is proposed. Mostly wireless sensor networks are large-scale systems, heavily noised, and the system workload is unfairly distributed among the master node and slave nodes. Hence, the master node may not easily detect a faulty slave node. In this paper, a more accurate faulty node detection scheme using a Markov chain model is investigated. Each slave node's condition can be divided into three states by probability calculation: Good-,Warning-, and Bad-state. Using this information, the master node can predicts the area in which an error frequently occurs. Simulation results show that the proposed method can improve the reliability of faulty node detection and the miss detection rate for a Wireless Sensor Networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信