{"title":"具有时变输入和状态延迟系统的积分滑模控制","authors":"D. B. Salem, Wajdi Saad, A. Sellami, G. García","doi":"10.1109/ICEMIS.2017.8273069","DOIUrl":null,"url":null,"abstract":"This paper proposes an integral sliding mode control (ISMC) for a class of linear systems with time-varying state and input delays. An integral sliding surface is firstly constructed. Then, by using the Lyapunov-Krasovskii functional and some specified matrices, a sufficient condition is obtained in the form of linear matrix inequalities (LMIs) to ensure the sliding mode dynamics to be asymptotically stable. Furthermore, a sliding mode controller law is synthesized to guarantee that the system trajectories can be driven onto the specified sliding surface in a finite time and maintained there for all subsequent time. Finally, an inverted pendulum model is used to illustrate the advantages and effectiveness of the design method.","PeriodicalId":117908,"journal":{"name":"2017 International Conference on Engineering & MIS (ICEMIS)","volume":"159 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Integral sliding mode control for systems with time-varying input and state delays\",\"authors\":\"D. B. Salem, Wajdi Saad, A. Sellami, G. García\",\"doi\":\"10.1109/ICEMIS.2017.8273069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an integral sliding mode control (ISMC) for a class of linear systems with time-varying state and input delays. An integral sliding surface is firstly constructed. Then, by using the Lyapunov-Krasovskii functional and some specified matrices, a sufficient condition is obtained in the form of linear matrix inequalities (LMIs) to ensure the sliding mode dynamics to be asymptotically stable. Furthermore, a sliding mode controller law is synthesized to guarantee that the system trajectories can be driven onto the specified sliding surface in a finite time and maintained there for all subsequent time. Finally, an inverted pendulum model is used to illustrate the advantages and effectiveness of the design method.\",\"PeriodicalId\":117908,\"journal\":{\"name\":\"2017 International Conference on Engineering & MIS (ICEMIS)\",\"volume\":\"159 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Engineering & MIS (ICEMIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEMIS.2017.8273069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Engineering & MIS (ICEMIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEMIS.2017.8273069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Integral sliding mode control for systems with time-varying input and state delays
This paper proposes an integral sliding mode control (ISMC) for a class of linear systems with time-varying state and input delays. An integral sliding surface is firstly constructed. Then, by using the Lyapunov-Krasovskii functional and some specified matrices, a sufficient condition is obtained in the form of linear matrix inequalities (LMIs) to ensure the sliding mode dynamics to be asymptotically stable. Furthermore, a sliding mode controller law is synthesized to guarantee that the system trajectories can be driven onto the specified sliding surface in a finite time and maintained there for all subsequent time. Finally, an inverted pendulum model is used to illustrate the advantages and effectiveness of the design method.