多自由度机械臂稀疏在线高斯过程阻抗学习

Lixu Deng, Zhiwen Li, Yongping Pan
{"title":"多自由度机械臂稀疏在线高斯过程阻抗学习","authors":"Lixu Deng, Zhiwen Li, Yongping Pan","doi":"10.1109/ICARM52023.2021.9536108","DOIUrl":null,"url":null,"abstract":"Robot interaction control with fixed impedance parameters usually fails to achieve the desired interaction behavior, motivating the introduction of variable impedance or admittance control. A gradient-descent (GD) impedance learning approach with a limited iteration number can make robots more compliant by minimizing an objective function. However, due to the nature of GD optimization, impedance parameters can not be adjusted in time by this approach, resulting in degraded robot compliance. This paper combines GD optimization with sparse online Gaussian process (SOGP) to develop a GD-based SOGP (GD-SOGP) impedance learning approach for variable admittance control. A high-fidelity mathematical model of a 7-DoF collaborative robot called Panda is applied for simulation studies. It is shown that the proposed GD-SOGP impedance learning can make the robot more compliant and outperforms the GD impedance learning in terms of impedance convergence.","PeriodicalId":367307,"journal":{"name":"2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Sparse Online Gaussian Process Impedance Learning for Multi-DoF Robotic Arms\",\"authors\":\"Lixu Deng, Zhiwen Li, Yongping Pan\",\"doi\":\"10.1109/ICARM52023.2021.9536108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robot interaction control with fixed impedance parameters usually fails to achieve the desired interaction behavior, motivating the introduction of variable impedance or admittance control. A gradient-descent (GD) impedance learning approach with a limited iteration number can make robots more compliant by minimizing an objective function. However, due to the nature of GD optimization, impedance parameters can not be adjusted in time by this approach, resulting in degraded robot compliance. This paper combines GD optimization with sparse online Gaussian process (SOGP) to develop a GD-based SOGP (GD-SOGP) impedance learning approach for variable admittance control. A high-fidelity mathematical model of a 7-DoF collaborative robot called Panda is applied for simulation studies. It is shown that the proposed GD-SOGP impedance learning can make the robot more compliant and outperforms the GD impedance learning in terms of impedance convergence.\",\"PeriodicalId\":367307,\"journal\":{\"name\":\"2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM)\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARM52023.2021.9536108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARM52023.2021.9536108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

固定阻抗参数的机器人交互控制往往不能达到预期的交互行为,导致引入变阻抗或导纳控制。有限迭代次数的梯度下降阻抗学习方法可以通过最小化目标函数来提高机器人的柔顺性。然而,由于GD优化的性质,这种方法不能及时调整阻抗参数,导致机器人顺应性下降。本文将遗传算法优化与稀疏在线高斯过程(SOGP)相结合,提出了一种基于遗传算法的变导纳控制的遗传算法(GD-SOGP)。应用高保真七自由度协作机器人“熊猫”的数学模型进行仿真研究。结果表明,所提出的GD- sogp阻抗学习方法可以使机器人具有更强的柔顺性,并且在阻抗收敛方面优于GD阻抗学习方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse Online Gaussian Process Impedance Learning for Multi-DoF Robotic Arms
Robot interaction control with fixed impedance parameters usually fails to achieve the desired interaction behavior, motivating the introduction of variable impedance or admittance control. A gradient-descent (GD) impedance learning approach with a limited iteration number can make robots more compliant by minimizing an objective function. However, due to the nature of GD optimization, impedance parameters can not be adjusted in time by this approach, resulting in degraded robot compliance. This paper combines GD optimization with sparse online Gaussian process (SOGP) to develop a GD-based SOGP (GD-SOGP) impedance learning approach for variable admittance control. A high-fidelity mathematical model of a 7-DoF collaborative robot called Panda is applied for simulation studies. It is shown that the proposed GD-SOGP impedance learning can make the robot more compliant and outperforms the GD impedance learning in terms of impedance convergence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信