M. Abdel-Rahman, T. Zendo, K. Sonomoto, Y. Tashiro
{"title":"蒙氏肠球菌QU 25产纤维素糖高l -乳酸发酵条件的优化:pH控制和温度对细胞生长和代谢产物变化的影响","authors":"M. Abdel-Rahman, T. Zendo, K. Sonomoto, Y. Tashiro","doi":"10.1109/ICEEA.2010.5596153","DOIUrl":null,"url":null,"abstract":"Optimization of L -(+)-lactic acid production from cellobiose, one of the main cellulase inhibitors during saccharifaying process, was studied. Fermentation runs pH-controlled at 7.0 provided the highest lactic acid produced (18.6 g/L) and maximum lactic acid productivity (2.1 g/L/h) which were increased by 376% and 346%, respectively in comparison to non pH-controlled batches. Moreover, the maximum L-lactic acid yield and optical purity were obtained at pH 7.0 with 0.94 g/g and 100%, respectively. The optimum temperature was found to be 43°C, at which the lactic acid yield and maximum productivity were 1.0 g/g and 3.44 g/L/h, respectively. This study provides an encouraging means for economic production of optically pure L-lactic acid from pre-hydrolyzed cellulosic materials.","PeriodicalId":262661,"journal":{"name":"2010 International Conference on Environmental Engineering and Applications","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of fermentation conditions for high L-lactic acid production from cellobiose by entercoccus mundtii QU 25: Impact of pH control and temperature on cell growth and changes in metabolites\",\"authors\":\"M. Abdel-Rahman, T. Zendo, K. Sonomoto, Y. Tashiro\",\"doi\":\"10.1109/ICEEA.2010.5596153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimization of L -(+)-lactic acid production from cellobiose, one of the main cellulase inhibitors during saccharifaying process, was studied. Fermentation runs pH-controlled at 7.0 provided the highest lactic acid produced (18.6 g/L) and maximum lactic acid productivity (2.1 g/L/h) which were increased by 376% and 346%, respectively in comparison to non pH-controlled batches. Moreover, the maximum L-lactic acid yield and optical purity were obtained at pH 7.0 with 0.94 g/g and 100%, respectively. The optimum temperature was found to be 43°C, at which the lactic acid yield and maximum productivity were 1.0 g/g and 3.44 g/L/h, respectively. This study provides an encouraging means for economic production of optically pure L-lactic acid from pre-hydrolyzed cellulosic materials.\",\"PeriodicalId\":262661,\"journal\":{\"name\":\"2010 International Conference on Environmental Engineering and Applications\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Environmental Engineering and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEA.2010.5596153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Environmental Engineering and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEA.2010.5596153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimization of fermentation conditions for high L-lactic acid production from cellobiose by entercoccus mundtii QU 25: Impact of pH control and temperature on cell growth and changes in metabolites
Optimization of L -(+)-lactic acid production from cellobiose, one of the main cellulase inhibitors during saccharifaying process, was studied. Fermentation runs pH-controlled at 7.0 provided the highest lactic acid produced (18.6 g/L) and maximum lactic acid productivity (2.1 g/L/h) which were increased by 376% and 346%, respectively in comparison to non pH-controlled batches. Moreover, the maximum L-lactic acid yield and optical purity were obtained at pH 7.0 with 0.94 g/g and 100%, respectively. The optimum temperature was found to be 43°C, at which the lactic acid yield and maximum productivity were 1.0 g/g and 3.44 g/L/h, respectively. This study provides an encouraging means for economic production of optically pure L-lactic acid from pre-hydrolyzed cellulosic materials.