DASH:在多代gpu加速集群上调度深度学习工作负载

Baolin Li, Tirthak Patel, V. Gadepally, K. Gettings, S. Samsi, Devesh Tiwari
{"title":"DASH:在多代gpu加速集群上调度深度学习工作负载","authors":"Baolin Li, Tirthak Patel, V. Gadepally, K. Gettings, S. Samsi, Devesh Tiwari","doi":"10.1109/HPEC55821.2022.9926390","DOIUrl":null,"url":null,"abstract":"Two notable characteristics of modern GPU-accelerated HPC clusters are: (1) they increasingly run deep learning (DL) model-training workloads, and (2) they consist of multiple generations of GPUs, i.e., they are heterogeneous. However, existing works in GPU cluster scheduling for DL workloads have not addressed the GPU multi-generation problem. We propose DASH, a GPU cluster scheduler designed to optimally make a match between different DL workloads and GPU types in a multi-generational GPU environment. By lever-aging execution characteristics of co-scheduled DL workloads, DASH can improve the average job runtime by 17% and the average job completion time by 14 % compared to the traditional heterogeneity-unaware job scheduler.","PeriodicalId":200071,"journal":{"name":"2022 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DASH: Scheduling Deep Learning Workloads on Multi-Generational GPU-Accelerated Clusters\",\"authors\":\"Baolin Li, Tirthak Patel, V. Gadepally, K. Gettings, S. Samsi, Devesh Tiwari\",\"doi\":\"10.1109/HPEC55821.2022.9926390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two notable characteristics of modern GPU-accelerated HPC clusters are: (1) they increasingly run deep learning (DL) model-training workloads, and (2) they consist of multiple generations of GPUs, i.e., they are heterogeneous. However, existing works in GPU cluster scheduling for DL workloads have not addressed the GPU multi-generation problem. We propose DASH, a GPU cluster scheduler designed to optimally make a match between different DL workloads and GPU types in a multi-generational GPU environment. By lever-aging execution characteristics of co-scheduled DL workloads, DASH can improve the average job runtime by 17% and the average job completion time by 14 % compared to the traditional heterogeneity-unaware job scheduler.\",\"PeriodicalId\":200071,\"journal\":{\"name\":\"2022 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC55821.2022.9926390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC55821.2022.9926390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现代gpu加速HPC集群的两个显著特征是:(1)它们越来越多地运行深度学习(DL)模型训练工作负载;(2)它们由多代gpu组成,即它们是异构的。然而,现有的GPU集群调度工作并没有解决GPU多代问题。我们提出DASH,一个GPU集群调度器,旨在在多代GPU环境中优化不同DL工作负载和GPU类型之间的匹配。通过利用共同调度的DL工作负载的老化执行特征,与传统的异构不感知作业调度器相比,DASH可以将平均作业运行时提高17%,平均作业完成时间提高14%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DASH: Scheduling Deep Learning Workloads on Multi-Generational GPU-Accelerated Clusters
Two notable characteristics of modern GPU-accelerated HPC clusters are: (1) they increasingly run deep learning (DL) model-training workloads, and (2) they consist of multiple generations of GPUs, i.e., they are heterogeneous. However, existing works in GPU cluster scheduling for DL workloads have not addressed the GPU multi-generation problem. We propose DASH, a GPU cluster scheduler designed to optimally make a match between different DL workloads and GPU types in a multi-generational GPU environment. By lever-aging execution characteristics of co-scheduled DL workloads, DASH can improve the average job runtime by 17% and the average job completion time by 14 % compared to the traditional heterogeneity-unaware job scheduler.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信