一种基于属性信息离散度量的决策树算法

IEEE WISA Pub Date : 1900-01-01 DOI:10.1109/WISA.2013.25
Dengchao He, Wenning Hao, Wenyan Gan, Gang Chen, Dawei Jin
{"title":"一种基于属性信息离散度量的决策树算法","authors":"Dengchao He, Wenning Hao, Wenyan Gan, Gang Chen, Dawei Jin","doi":"10.1109/WISA.2013.25","DOIUrl":null,"url":null,"abstract":"In this paper, an improved decision tree algorithm based on dispersion measure of attribute information was proposed, which combined information gain and dispersion of attribute information as an evaluation criterion of attribute selection in order to overcome the deficiency that ID3 decision tree algorithm leaned to the multi-value attribute. From results of the experiment, it can be demonstrated that the proposed algorithm could over the deficiency of leaning to the multi-value attribute, and has good performance on classification.","PeriodicalId":178339,"journal":{"name":"IEEE WISA","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Decision Tree Algorithm Based on Dispersion Measure of Attribute Information\",\"authors\":\"Dengchao He, Wenning Hao, Wenyan Gan, Gang Chen, Dawei Jin\",\"doi\":\"10.1109/WISA.2013.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an improved decision tree algorithm based on dispersion measure of attribute information was proposed, which combined information gain and dispersion of attribute information as an evaluation criterion of attribute selection in order to overcome the deficiency that ID3 decision tree algorithm leaned to the multi-value attribute. From results of the experiment, it can be demonstrated that the proposed algorithm could over the deficiency of leaning to the multi-value attribute, and has good performance on classification.\",\"PeriodicalId\":178339,\"journal\":{\"name\":\"IEEE WISA\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE WISA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WISA.2013.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE WISA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISA.2013.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Decision Tree Algorithm Based on Dispersion Measure of Attribute Information
In this paper, an improved decision tree algorithm based on dispersion measure of attribute information was proposed, which combined information gain and dispersion of attribute information as an evaluation criterion of attribute selection in order to overcome the deficiency that ID3 decision tree algorithm leaned to the multi-value attribute. From results of the experiment, it can be demonstrated that the proposed algorithm could over the deficiency of leaning to the multi-value attribute, and has good performance on classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信