基于非通信的直流减载方案比较

Abdulrahman Babagana, T. Zaman, Yljon Seferi, M. Syed, G. Burt
{"title":"基于非通信的直流减载方案比较","authors":"Abdulrahman Babagana, T. Zaman, Yljon Seferi, M. Syed, G. Burt","doi":"10.1109/UPEC55022.2022.9917898","DOIUrl":null,"url":null,"abstract":"Whenever the total power that can be provided by the distributed energy resources (DERs) is less than the total power demand of the loads, the DC bus voltages start to fall which could lead to power collapse. This paper investigates and compares the performances of the existing non-communication based (decentralized) load shedding schemes in a direct current (DC) microgrid to protect the integrity of the microgrid under a large disturbance. The simulation is carried out in a Matlab environment with various forms of load and distributed energy resources on an IEEE 37 AC Node converted to DC. The findings show that the conventional load shedding scheme could expose critical loads to substantial and lengthy voltage sags. Voltage sags and over-shedding of load could be resolved using combined load shedding scheme. The adaptive schemes minimise the duration and magnitude of voltage drop by utilizing the rate of change of voltage (ROCOV) to achieve a more reliable assessment of the microgrid operating conditions and determine the appropriate load shedding voltage thresholds and time delays. All the schemes could not achieve an optimal load shedding, this work therefore leads to the need for more advanced load shedding schemes that can shed load optimally for future DC microgrids.","PeriodicalId":371561,"journal":{"name":"2022 57th International Universities Power Engineering Conference (UPEC)","volume":"41 26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Non-Communication based DC Load Shedding Schemes\",\"authors\":\"Abdulrahman Babagana, T. Zaman, Yljon Seferi, M. Syed, G. Burt\",\"doi\":\"10.1109/UPEC55022.2022.9917898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Whenever the total power that can be provided by the distributed energy resources (DERs) is less than the total power demand of the loads, the DC bus voltages start to fall which could lead to power collapse. This paper investigates and compares the performances of the existing non-communication based (decentralized) load shedding schemes in a direct current (DC) microgrid to protect the integrity of the microgrid under a large disturbance. The simulation is carried out in a Matlab environment with various forms of load and distributed energy resources on an IEEE 37 AC Node converted to DC. The findings show that the conventional load shedding scheme could expose critical loads to substantial and lengthy voltage sags. Voltage sags and over-shedding of load could be resolved using combined load shedding scheme. The adaptive schemes minimise the duration and magnitude of voltage drop by utilizing the rate of change of voltage (ROCOV) to achieve a more reliable assessment of the microgrid operating conditions and determine the appropriate load shedding voltage thresholds and time delays. All the schemes could not achieve an optimal load shedding, this work therefore leads to the need for more advanced load shedding schemes that can shed load optimally for future DC microgrids.\",\"PeriodicalId\":371561,\"journal\":{\"name\":\"2022 57th International Universities Power Engineering Conference (UPEC)\",\"volume\":\"41 26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 57th International Universities Power Engineering Conference (UPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UPEC55022.2022.9917898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 57th International Universities Power Engineering Conference (UPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPEC55022.2022.9917898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当分布式能源提供的总功率小于负载的总功率需求时,直流母线电压开始下降,可能导致电力崩溃。本文研究和比较了直流微电网中现有的基于非通信(分散式)减载方案的性能,以保护微电网在大扰动下的完整性。仿真在Matlab环境下进行,在IEEE 37交流节点转换成直流的情况下,采用各种形式的负载和分布式能源进行仿真。研究结果表明,传统的减载方案可能使关键负载暴露于大量和长时间的电压跌落。采用联合减载方案可解决电压骤降和负荷过减的问题。自适应方案通过利用电压变化率(ROCOV)来实现对微电网运行条件的更可靠评估,并确定适当的减载电压阈值和时间延迟,从而最大限度地减少电压下降的持续时间和幅度。所有方案都无法实现最佳减载,因此,这项工作导致需要更先进的减载方案,以便为未来的直流微电网实现最佳减载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of Non-Communication based DC Load Shedding Schemes
Whenever the total power that can be provided by the distributed energy resources (DERs) is less than the total power demand of the loads, the DC bus voltages start to fall which could lead to power collapse. This paper investigates and compares the performances of the existing non-communication based (decentralized) load shedding schemes in a direct current (DC) microgrid to protect the integrity of the microgrid under a large disturbance. The simulation is carried out in a Matlab environment with various forms of load and distributed energy resources on an IEEE 37 AC Node converted to DC. The findings show that the conventional load shedding scheme could expose critical loads to substantial and lengthy voltage sags. Voltage sags and over-shedding of load could be resolved using combined load shedding scheme. The adaptive schemes minimise the duration and magnitude of voltage drop by utilizing the rate of change of voltage (ROCOV) to achieve a more reliable assessment of the microgrid operating conditions and determine the appropriate load shedding voltage thresholds and time delays. All the schemes could not achieve an optimal load shedding, this work therefore leads to the need for more advanced load shedding schemes that can shed load optimally for future DC microgrids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信