Bo Yan, Wenli Tang, J. Liu, Yiping Liu, Fanku Meng, H. Su
{"title":"切片总结:基于样本的复杂网络核心-外围分类","authors":"Bo Yan, Wenli Tang, J. Liu, Yiping Liu, Fanku Meng, H. Su","doi":"10.1109/MSN48538.2019.00049","DOIUrl":null,"url":null,"abstract":"Core-periphery structure refers to a prevalent property exhibited by many real-world complex networks. The formulation and identification of a network core-periphery structure have been a challenging problem. A classical framework (BE) proposed by Borgatti and Everett defines a core-periphery partition of the network by aligning its nodes with a block model and has been a standard method for this task. This method, however, suffers from high computational costs which make it inapplicable to large networks. Realizing this limitation, we proposed a new framework, which aims to efficiently evaluate core-ness of nodes. Our framework builds a model for core-periphery classification by integrating small samples. The experimental results of six real-world networks shows that our methods can efficiently and effectively identify network core, achieving a running time of less than three hours for a network with about 220,000 nodes.","PeriodicalId":368318,"journal":{"name":"2019 15th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Summarizing the Slices: Sample-Based Core-Periphery Classification on Complex Networks\",\"authors\":\"Bo Yan, Wenli Tang, J. Liu, Yiping Liu, Fanku Meng, H. Su\",\"doi\":\"10.1109/MSN48538.2019.00049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Core-periphery structure refers to a prevalent property exhibited by many real-world complex networks. The formulation and identification of a network core-periphery structure have been a challenging problem. A classical framework (BE) proposed by Borgatti and Everett defines a core-periphery partition of the network by aligning its nodes with a block model and has been a standard method for this task. This method, however, suffers from high computational costs which make it inapplicable to large networks. Realizing this limitation, we proposed a new framework, which aims to efficiently evaluate core-ness of nodes. Our framework builds a model for core-periphery classification by integrating small samples. The experimental results of six real-world networks shows that our methods can efficiently and effectively identify network core, achieving a running time of less than three hours for a network with about 220,000 nodes.\",\"PeriodicalId\":368318,\"journal\":{\"name\":\"2019 15th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 15th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MSN48538.2019.00049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSN48538.2019.00049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Summarizing the Slices: Sample-Based Core-Periphery Classification on Complex Networks
Core-periphery structure refers to a prevalent property exhibited by many real-world complex networks. The formulation and identification of a network core-periphery structure have been a challenging problem. A classical framework (BE) proposed by Borgatti and Everett defines a core-periphery partition of the network by aligning its nodes with a block model and has been a standard method for this task. This method, however, suffers from high computational costs which make it inapplicable to large networks. Realizing this limitation, we proposed a new framework, which aims to efficiently evaluate core-ness of nodes. Our framework builds a model for core-periphery classification by integrating small samples. The experimental results of six real-world networks shows that our methods can efficiently and effectively identify network core, achieving a running time of less than three hours for a network with about 220,000 nodes.