基于U-Net结构的蒸汽或气液界面气泡流模式识别

A. Seredkin, I. Plokhikh, R. Mullyadzhanov, I. Malakhov, V. Serdyukov, A. Surtaev, Alexander Chinak, P. Lobanov, M. Tokarev
{"title":"基于U-Net结构的蒸汽或气液界面气泡流模式识别","authors":"A. Seredkin, I. Plokhikh, R. Mullyadzhanov, I. Malakhov, V. Serdyukov, A. Surtaev, Alexander Chinak, P. Lobanov, M. Tokarev","doi":"10.1109/S.A.I.ence50533.2020.9303175","DOIUrl":null,"url":null,"abstract":"We apply deep learning algorithms to tackle the bubble recognition task relying on the experimental video recordings of the vapor cavities growing during the water pool boiling due to the heated bottom and an isothermal multiphase flow in a channel. As a basic network architecture we use U-Net with ResNet 34 and ResNet 50 encoders depending on the complexity of the image background. Three classes have been introduced, i.e. the background, bubble and its boundary allowing to post-process some geometric characteristics in a straightforward manner. We demonstrate the capabilities by tracking the growth of an ensemble of vapor bubbles attached to the heater and studying the size distribution of bubbles in a channel.","PeriodicalId":201402,"journal":{"name":"2020 Science and Artificial Intelligence conference (S.A.I.ence)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Pattern recognition for bubbly flows with vapor or gas-liquid interfaces using U-Net architecture\",\"authors\":\"A. Seredkin, I. Plokhikh, R. Mullyadzhanov, I. Malakhov, V. Serdyukov, A. Surtaev, Alexander Chinak, P. Lobanov, M. Tokarev\",\"doi\":\"10.1109/S.A.I.ence50533.2020.9303175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We apply deep learning algorithms to tackle the bubble recognition task relying on the experimental video recordings of the vapor cavities growing during the water pool boiling due to the heated bottom and an isothermal multiphase flow in a channel. As a basic network architecture we use U-Net with ResNet 34 and ResNet 50 encoders depending on the complexity of the image background. Three classes have been introduced, i.e. the background, bubble and its boundary allowing to post-process some geometric characteristics in a straightforward manner. We demonstrate the capabilities by tracking the growth of an ensemble of vapor bubbles attached to the heater and studying the size distribution of bubbles in a channel.\",\"PeriodicalId\":201402,\"journal\":{\"name\":\"2020 Science and Artificial Intelligence conference (S.A.I.ence)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Science and Artificial Intelligence conference (S.A.I.ence)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/S.A.I.ence50533.2020.9303175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Science and Artificial Intelligence conference (S.A.I.ence)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/S.A.I.ence50533.2020.9303175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文采用深度学习算法来解决气泡识别任务,该任务依赖于实验视频记录,该视频记录了由于底部加热和通道内等温多相流而导致的水池沸腾过程中蒸汽腔的生长。作为一个基本的网络架构,我们使用U-Net与ResNet 34和ResNet 50编码器根据图像背景的复杂性。介绍了三个类,即背景,气泡及其边界,允许以直接的方式后处理一些几何特征。我们通过跟踪附在加热器上的蒸汽气泡集合的增长和研究通道中气泡的大小分布来证明这种能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pattern recognition for bubbly flows with vapor or gas-liquid interfaces using U-Net architecture
We apply deep learning algorithms to tackle the bubble recognition task relying on the experimental video recordings of the vapor cavities growing during the water pool boiling due to the heated bottom and an isothermal multiphase flow in a channel. As a basic network architecture we use U-Net with ResNet 34 and ResNet 50 encoders depending on the complexity of the image background. Three classes have been introduced, i.e. the background, bubble and its boundary allowing to post-process some geometric characteristics in a straightforward manner. We demonstrate the capabilities by tracking the growth of an ensemble of vapor bubbles attached to the heater and studying the size distribution of bubbles in a channel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信