Blanca Florentino-Liaño, N. O’Mahony, Antonio Artés-Rodríguez
{"title":"具有自动方向估计的长期人类活动识别","authors":"Blanca Florentino-Liaño, N. O’Mahony, Antonio Artés-Rodríguez","doi":"10.1109/MLSP.2012.6349789","DOIUrl":null,"url":null,"abstract":"This work deals with the elimination of sensitivity to sensor orientation in the task of human daily activity recognition using a single miniature inertial sensor. The proposed method detects time intervals of walking, automatically estimating the orientation in these intervals and transforming the observed signals to a “virtual” sensor orientation. Classification results show that excellent performance, in terms of both precision and recall (up to 100%), is achieved, for long-term recordings in real-life settings.","PeriodicalId":262601,"journal":{"name":"2012 IEEE International Workshop on Machine Learning for Signal Processing","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Long term human activity recognition with automatic orientation estimation\",\"authors\":\"Blanca Florentino-Liaño, N. O’Mahony, Antonio Artés-Rodríguez\",\"doi\":\"10.1109/MLSP.2012.6349789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work deals with the elimination of sensitivity to sensor orientation in the task of human daily activity recognition using a single miniature inertial sensor. The proposed method detects time intervals of walking, automatically estimating the orientation in these intervals and transforming the observed signals to a “virtual” sensor orientation. Classification results show that excellent performance, in terms of both precision and recall (up to 100%), is achieved, for long-term recordings in real-life settings.\",\"PeriodicalId\":262601,\"journal\":{\"name\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2012.6349789\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Workshop on Machine Learning for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2012.6349789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Long term human activity recognition with automatic orientation estimation
This work deals with the elimination of sensitivity to sensor orientation in the task of human daily activity recognition using a single miniature inertial sensor. The proposed method detects time intervals of walking, automatically estimating the orientation in these intervals and transforming the observed signals to a “virtual” sensor orientation. Classification results show that excellent performance, in terms of both precision and recall (up to 100%), is achieved, for long-term recordings in real-life settings.