R. Ullah, N. Fisal, Hashim Safdar, W. Maqbool, Z. Khalid, A. Khan
{"title":"基于Voronoi单元几何的OFDMA蜂窝网络动态分数频率复用","authors":"R. Ullah, N. Fisal, Hashim Safdar, W. Maqbool, Z. Khalid, A. Khan","doi":"10.1109/ICSIPA.2013.6708046","DOIUrl":null,"url":null,"abstract":"Interference Management (IM) is one of the major challenges of next generation wireless communication. Fractional Frequency Reuse (FFR) has been acknowledged as an efficient IM technique, which offers significant capacity enhancement and improve cell edge coverage with low complexity. In literature, FFR has been analyzed mostly with cellular networks described by Hexagon Grid Model, which is neither tractable nor scalable to the dense deployment of next generation wireless networks. Moreover, the perfect geometry based grid model tends to overestimate the system performance and not able to reflect the reality. In this paper, we use the stochastic geometry approach, FFR is analyzed with cellular network modeled by homogeneous Poisson Point Process (PPP). A dynamic frequency allocation scheme is proposed which take into account the randomness of the cell coverage area describe by Voronoi tessellation. It is shown that the proposed scheme outperforms the traditional fixed frequency allocation schemes in terms of per user capacity and capacity density.","PeriodicalId":440373,"journal":{"name":"2013 IEEE International Conference on Signal and Image Processing Applications","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Voronoi cell geometry based dynamic Fractional Frequency Reuse for OFDMA cellular networks\",\"authors\":\"R. Ullah, N. Fisal, Hashim Safdar, W. Maqbool, Z. Khalid, A. Khan\",\"doi\":\"10.1109/ICSIPA.2013.6708046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interference Management (IM) is one of the major challenges of next generation wireless communication. Fractional Frequency Reuse (FFR) has been acknowledged as an efficient IM technique, which offers significant capacity enhancement and improve cell edge coverage with low complexity. In literature, FFR has been analyzed mostly with cellular networks described by Hexagon Grid Model, which is neither tractable nor scalable to the dense deployment of next generation wireless networks. Moreover, the perfect geometry based grid model tends to overestimate the system performance and not able to reflect the reality. In this paper, we use the stochastic geometry approach, FFR is analyzed with cellular network modeled by homogeneous Poisson Point Process (PPP). A dynamic frequency allocation scheme is proposed which take into account the randomness of the cell coverage area describe by Voronoi tessellation. It is shown that the proposed scheme outperforms the traditional fixed frequency allocation schemes in terms of per user capacity and capacity density.\",\"PeriodicalId\":440373,\"journal\":{\"name\":\"2013 IEEE International Conference on Signal and Image Processing Applications\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Signal and Image Processing Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIPA.2013.6708046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Signal and Image Processing Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2013.6708046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Voronoi cell geometry based dynamic Fractional Frequency Reuse for OFDMA cellular networks
Interference Management (IM) is one of the major challenges of next generation wireless communication. Fractional Frequency Reuse (FFR) has been acknowledged as an efficient IM technique, which offers significant capacity enhancement and improve cell edge coverage with low complexity. In literature, FFR has been analyzed mostly with cellular networks described by Hexagon Grid Model, which is neither tractable nor scalable to the dense deployment of next generation wireless networks. Moreover, the perfect geometry based grid model tends to overestimate the system performance and not able to reflect the reality. In this paper, we use the stochastic geometry approach, FFR is analyzed with cellular network modeled by homogeneous Poisson Point Process (PPP). A dynamic frequency allocation scheme is proposed which take into account the randomness of the cell coverage area describe by Voronoi tessellation. It is shown that the proposed scheme outperforms the traditional fixed frequency allocation schemes in terms of per user capacity and capacity density.