Ashkan Sharabiani, H. Darabi, A. Bress, L. Cavallari, E. Nutescu, K. Drozda
{"title":"基于机器学习的非裔美国患者华法林最佳剂量预测","authors":"Ashkan Sharabiani, H. Darabi, A. Bress, L. Cavallari, E. Nutescu, K. Drozda","doi":"10.1109/CoASE.2013.6653999","DOIUrl":null,"url":null,"abstract":"This paper proposes a new model for predicting the optimal warfarin dosing for African American patients. The prediction model is created using the multivariable regression method. The accuracy of dosing prediction is directly related to patient's safety. We show that the proposed model has better accuracy compare to all other available prediction methods for optimal dosing of warfarin.","PeriodicalId":191166,"journal":{"name":"2013 IEEE International Conference on Automation Science and Engineering (CASE)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Machine learning based prediction of warfarin optimal dosing for African American patients\",\"authors\":\"Ashkan Sharabiani, H. Darabi, A. Bress, L. Cavallari, E. Nutescu, K. Drozda\",\"doi\":\"10.1109/CoASE.2013.6653999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new model for predicting the optimal warfarin dosing for African American patients. The prediction model is created using the multivariable regression method. The accuracy of dosing prediction is directly related to patient's safety. We show that the proposed model has better accuracy compare to all other available prediction methods for optimal dosing of warfarin.\",\"PeriodicalId\":191166,\"journal\":{\"name\":\"2013 IEEE International Conference on Automation Science and Engineering (CASE)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Automation Science and Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CoASE.2013.6653999\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoASE.2013.6653999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machine learning based prediction of warfarin optimal dosing for African American patients
This paper proposes a new model for predicting the optimal warfarin dosing for African American patients. The prediction model is created using the multivariable regression method. The accuracy of dosing prediction is directly related to patient's safety. We show that the proposed model has better accuracy compare to all other available prediction methods for optimal dosing of warfarin.