S. Riyadi, Tety Dwi Septiari, Cahya Damarjati, S. Ramli
{"title":"基于Inception深度学习的ct扫描图像Covid-19检测","authors":"S. Riyadi, Tety Dwi Septiari, Cahya Damarjati, S. Ramli","doi":"10.1109/ICCSCE54767.2022.9935633","DOIUrl":null,"url":null,"abstract":"The SARS-Cov-2 strain caused COVID-19, inflicting mild to moderate respiratory problems. The spread of COVID-19 is extremely fast which has resulted in the number of victims who have been declared dead to date, up to 2,587,225. There are several ways to reduce the spread of COVID-19, one of which is early detection. Currently, there are alternative methods used for early detection, one of which is the neural network method. Deep learning is one type of artificial neural network that is often used for the detection of several kinds of diseases. In this study, we classify CT-Scan images of the lungs based on two classes, namely CT_COVID and CT-NonCOVID, using two models, Inception-v3 and Inception-v4. The total CT-Scan image data used is 2038 and comes from the Kaggle.com website. Results obtained were then compared with standard performance metrics and then analyzed between the best models among the models used in the COVID-19 classification. From the results of the study, the Inception-v3 model obtained an average accuracy value of 93.96%, a precision value of 90.57%, a recall value of 95.65%, a specificity value of 92.81% and an f-score value of 92.51% and The Inception-v4 model obtained an average accuracy value of 86.41%, a precision value of 77.01%, a recall value of 91.18%, a specificity value of 83.77% and an f-score value of 83.38%. Based on the research results, the method with the best performance in COVID-19 classification is the Inception-v3 model because the Inception-v3 model has more layers, with a total of 48 layers and utilizes the idea of factorization that is more suitable for CT-Scan image classification which has low contrast visualization.","PeriodicalId":346014,"journal":{"name":"2022 IEEE 12th International Conference on Control System, Computing and Engineering (ICCSCE)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Covid-19 Detection Based-On CT-Scan Images Using Inception Deep Learning\",\"authors\":\"S. Riyadi, Tety Dwi Septiari, Cahya Damarjati, S. Ramli\",\"doi\":\"10.1109/ICCSCE54767.2022.9935633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The SARS-Cov-2 strain caused COVID-19, inflicting mild to moderate respiratory problems. The spread of COVID-19 is extremely fast which has resulted in the number of victims who have been declared dead to date, up to 2,587,225. There are several ways to reduce the spread of COVID-19, one of which is early detection. Currently, there are alternative methods used for early detection, one of which is the neural network method. Deep learning is one type of artificial neural network that is often used for the detection of several kinds of diseases. In this study, we classify CT-Scan images of the lungs based on two classes, namely CT_COVID and CT-NonCOVID, using two models, Inception-v3 and Inception-v4. The total CT-Scan image data used is 2038 and comes from the Kaggle.com website. Results obtained were then compared with standard performance metrics and then analyzed between the best models among the models used in the COVID-19 classification. From the results of the study, the Inception-v3 model obtained an average accuracy value of 93.96%, a precision value of 90.57%, a recall value of 95.65%, a specificity value of 92.81% and an f-score value of 92.51% and The Inception-v4 model obtained an average accuracy value of 86.41%, a precision value of 77.01%, a recall value of 91.18%, a specificity value of 83.77% and an f-score value of 83.38%. Based on the research results, the method with the best performance in COVID-19 classification is the Inception-v3 model because the Inception-v3 model has more layers, with a total of 48 layers and utilizes the idea of factorization that is more suitable for CT-Scan image classification which has low contrast visualization.\",\"PeriodicalId\":346014,\"journal\":{\"name\":\"2022 IEEE 12th International Conference on Control System, Computing and Engineering (ICCSCE)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 12th International Conference on Control System, Computing and Engineering (ICCSCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSCE54767.2022.9935633\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 12th International Conference on Control System, Computing and Engineering (ICCSCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSCE54767.2022.9935633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
摘要
SARS-Cov-2毒株导致COVID-19,造成轻度至中度呼吸问题。COVID-19的传播速度非常快,迄今为止已宣布死亡的受害者人数高达2,587,225人。有几种方法可以减少COVID-19的传播,其中之一是早期发现。目前,有一些替代方法用于早期检测,其中一种方法是神经网络方法。深度学习是一种人工神经网络,通常用于检测几种疾病。在本研究中,我们使用Inception-v3和Inception-v4两种模型,基于CT_COVID和ct - non - covid两类对肺部ct扫描图像进行分类。使用的ct扫描图像数据总数为2038,来自Kaggle.com网站。然后将所得结果与标准性能指标进行比较,然后在COVID-19分类中使用的模型中对最佳模型进行分析。从研究结果来看,Inception-v3模型的平均准确率为93.96%,准确率为90.57%,召回率为95.65%,特异性值为92.81%,f-score值为92.51%;Inception-v4模型的平均准确率为86.41%,准确率为77.01%,召回率为91.18%,特异性值为83.77%,f-score值为83.38%。根据研究结果,在COVID-19分类中表现最好的方法是Inception-v3模型,因为Inception-v3模型的层数更多,总共有48层,并且利用了分解的思想,更适合对比度可视化较低的ct扫描图像分类。
Covid-19 Detection Based-On CT-Scan Images Using Inception Deep Learning
The SARS-Cov-2 strain caused COVID-19, inflicting mild to moderate respiratory problems. The spread of COVID-19 is extremely fast which has resulted in the number of victims who have been declared dead to date, up to 2,587,225. There are several ways to reduce the spread of COVID-19, one of which is early detection. Currently, there are alternative methods used for early detection, one of which is the neural network method. Deep learning is one type of artificial neural network that is often used for the detection of several kinds of diseases. In this study, we classify CT-Scan images of the lungs based on two classes, namely CT_COVID and CT-NonCOVID, using two models, Inception-v3 and Inception-v4. The total CT-Scan image data used is 2038 and comes from the Kaggle.com website. Results obtained were then compared with standard performance metrics and then analyzed between the best models among the models used in the COVID-19 classification. From the results of the study, the Inception-v3 model obtained an average accuracy value of 93.96%, a precision value of 90.57%, a recall value of 95.65%, a specificity value of 92.81% and an f-score value of 92.51% and The Inception-v4 model obtained an average accuracy value of 86.41%, a precision value of 77.01%, a recall value of 91.18%, a specificity value of 83.77% and an f-score value of 83.38%. Based on the research results, the method with the best performance in COVID-19 classification is the Inception-v3 model because the Inception-v3 model has more layers, with a total of 48 layers and utilizes the idea of factorization that is more suitable for CT-Scan image classification which has low contrast visualization.