基于复合掉期融资风险信用评估调整的稳定对数正态扩散

Cyril Durand
{"title":"基于复合掉期融资风险信用评估调整的稳定对数正态扩散","authors":"Cyril Durand","doi":"10.2139/ssrn.2684392","DOIUrl":null,"url":null,"abstract":"We discuss several methodologies for stabilizing the diffusion of compounding instruments modeled by means of lognormal instantaneous interest rate models. We first delve into alternative mathematical and numerical methodologies before showing that the latter suffer from a high seed sensitivity which makes them difficult to apply in practice. We consequently resort to a fine-tune capping of the maximal value of the interest rate which ensures stabilization without altering the main diffusion moments characteristics. We illustrate our approach by examining the funding loss, the Funding Risk Adjustment (FRA) and the Funding Risk Credit Valuation Adjustment (FRCVA) of a compounding swap along the lines of a preceding paper where we advocate the benefit, when funding cannot be hedged, of examining funding risk in an actuarial setting.","PeriodicalId":378972,"journal":{"name":"ERN: Swaps & Forwards (Topic)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stabilizing Log-Normal Diffusion in View of Compounding Swaps Funding Risk Credit Valuation Adjustment (FRCVA)\",\"authors\":\"Cyril Durand\",\"doi\":\"10.2139/ssrn.2684392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss several methodologies for stabilizing the diffusion of compounding instruments modeled by means of lognormal instantaneous interest rate models. We first delve into alternative mathematical and numerical methodologies before showing that the latter suffer from a high seed sensitivity which makes them difficult to apply in practice. We consequently resort to a fine-tune capping of the maximal value of the interest rate which ensures stabilization without altering the main diffusion moments characteristics. We illustrate our approach by examining the funding loss, the Funding Risk Adjustment (FRA) and the Funding Risk Credit Valuation Adjustment (FRCVA) of a compounding swap along the lines of a preceding paper where we advocate the benefit, when funding cannot be hedged, of examining funding risk in an actuarial setting.\",\"PeriodicalId\":378972,\"journal\":{\"name\":\"ERN: Swaps & Forwards (Topic)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Swaps & Forwards (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2684392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Swaps & Forwards (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2684392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们讨论了几种稳定对数正态瞬时利率模型模拟的复合工具扩散的方法。我们首先深入研究替代的数学和数值方法,然后显示后者遭受高种子敏感性,这使得它们难以在实践中应用。因此,我们采用利率最大值的微调上限,以确保在不改变主要扩散矩特征的情况下保持稳定。我们通过检查复利掉期的资金损失、资金风险调整(FRA)和资金风险信用评估调整(FRCVA)来说明我们的方法,在之前的一篇论文中,我们主张在资金无法对冲的情况下,在精算环境中检查资金风险的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stabilizing Log-Normal Diffusion in View of Compounding Swaps Funding Risk Credit Valuation Adjustment (FRCVA)
We discuss several methodologies for stabilizing the diffusion of compounding instruments modeled by means of lognormal instantaneous interest rate models. We first delve into alternative mathematical and numerical methodologies before showing that the latter suffer from a high seed sensitivity which makes them difficult to apply in practice. We consequently resort to a fine-tune capping of the maximal value of the interest rate which ensures stabilization without altering the main diffusion moments characteristics. We illustrate our approach by examining the funding loss, the Funding Risk Adjustment (FRA) and the Funding Risk Credit Valuation Adjustment (FRCVA) of a compounding swap along the lines of a preceding paper where we advocate the benefit, when funding cannot be hedged, of examining funding risk in an actuarial setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信