Ranjit P. Kolkar, Rudra Pratap Singh Tomar, Geetha Vasantha
{"title":"基于CNN、LSTM和GRU的物联网人体活动识别模型","authors":"Ranjit P. Kolkar, Rudra Pratap Singh Tomar, Geetha Vasantha","doi":"10.1109/SILCON55242.2022.10028803","DOIUrl":null,"url":null,"abstract":"Smartphones’ ability to generate data with their inbuilt sensors has made them used for Human Activity Recognition. The work highlights the importance of Human Activity Recognition (HAR) systems capable of sensing human activities like the inertial motion of a human body. The sensors are worn on a body part and tracked from whole-body motions and monitoring. Real-time signal processing is used to sense human body movements using wearable sensors. The work aims to provide opportunities for promising health applications using IoT. There are many challenges to recognising human activities, including accuracy. This work analyses Human Activity recognition concerning CNN, LSTM, and GRU deep learning models to improve the accuracy of the human activity recognition in the UCI-HAR and WISDM datasets. The comparative analysis shows promising results for Human activity recognition.","PeriodicalId":183947,"journal":{"name":"2022 IEEE Silchar Subsection Conference (SILCON)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"IoT-based Human Activity Recognition Models based on CNN, LSTM and GRU\",\"authors\":\"Ranjit P. Kolkar, Rudra Pratap Singh Tomar, Geetha Vasantha\",\"doi\":\"10.1109/SILCON55242.2022.10028803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smartphones’ ability to generate data with their inbuilt sensors has made them used for Human Activity Recognition. The work highlights the importance of Human Activity Recognition (HAR) systems capable of sensing human activities like the inertial motion of a human body. The sensors are worn on a body part and tracked from whole-body motions and monitoring. Real-time signal processing is used to sense human body movements using wearable sensors. The work aims to provide opportunities for promising health applications using IoT. There are many challenges to recognising human activities, including accuracy. This work analyses Human Activity recognition concerning CNN, LSTM, and GRU deep learning models to improve the accuracy of the human activity recognition in the UCI-HAR and WISDM datasets. The comparative analysis shows promising results for Human activity recognition.\",\"PeriodicalId\":183947,\"journal\":{\"name\":\"2022 IEEE Silchar Subsection Conference (SILCON)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Silchar Subsection Conference (SILCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SILCON55242.2022.10028803\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Silchar Subsection Conference (SILCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SILCON55242.2022.10028803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
IoT-based Human Activity Recognition Models based on CNN, LSTM and GRU
Smartphones’ ability to generate data with their inbuilt sensors has made them used for Human Activity Recognition. The work highlights the importance of Human Activity Recognition (HAR) systems capable of sensing human activities like the inertial motion of a human body. The sensors are worn on a body part and tracked from whole-body motions and monitoring. Real-time signal processing is used to sense human body movements using wearable sensors. The work aims to provide opportunities for promising health applications using IoT. There are many challenges to recognising human activities, including accuracy. This work analyses Human Activity recognition concerning CNN, LSTM, and GRU deep learning models to improve the accuracy of the human activity recognition in the UCI-HAR and WISDM datasets. The comparative analysis shows promising results for Human activity recognition.