高动态范围图像重建的双流全局引导学习

Junjie Lian, Yongfang Wang, Chuang Wang
{"title":"高动态范围图像重建的双流全局引导学习","authors":"Junjie Lian, Yongfang Wang, Chuang Wang","doi":"10.1109/VCIP47243.2019.8965798","DOIUrl":null,"url":null,"abstract":"High dynamic range (HDR) images capture the luminance information of the real world and have more detailed information than low dynamic range (LDR) images. In this paper, we propose a dual-streams global guided end-to-end learning method to reconstruct HDR image from a single LDR input that combines both global information and local image features. In our framework, global features and local features are separately learned in dual-streams branches. In the reconstructed phase, we use a fusion layer to fuse them so that the global features can guide the local features to better reconstruct the HDR image. Furthermore, we design mixed loss function including multi-scale pixel-wise loss, color similarity loss and gradient loss to jointly train our network. Comparative experiments are carried out with other state-of-the-art methods and our method achieves superior performance.","PeriodicalId":388109,"journal":{"name":"2019 IEEE Visual Communications and Image Processing (VCIP)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dual-Streams Global Guided Learning for High Dynamic Range Image Reconstruction\",\"authors\":\"Junjie Lian, Yongfang Wang, Chuang Wang\",\"doi\":\"10.1109/VCIP47243.2019.8965798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High dynamic range (HDR) images capture the luminance information of the real world and have more detailed information than low dynamic range (LDR) images. In this paper, we propose a dual-streams global guided end-to-end learning method to reconstruct HDR image from a single LDR input that combines both global information and local image features. In our framework, global features and local features are separately learned in dual-streams branches. In the reconstructed phase, we use a fusion layer to fuse them so that the global features can guide the local features to better reconstruct the HDR image. Furthermore, we design mixed loss function including multi-scale pixel-wise loss, color similarity loss and gradient loss to jointly train our network. Comparative experiments are carried out with other state-of-the-art methods and our method achieves superior performance.\",\"PeriodicalId\":388109,\"journal\":{\"name\":\"2019 IEEE Visual Communications and Image Processing (VCIP)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP47243.2019.8965798\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP47243.2019.8965798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

高动态范围(HDR)图像捕捉真实世界的亮度信息,比低动态范围(LDR)图像具有更详细的信息。本文提出了一种双流全局引导端到端学习方法,结合全局信息和局部图像特征,从单个LDR输入重构HDR图像。在我们的框架中,全局特征和局部特征在双流分支中分别学习。在重构阶段,我们使用融合层对它们进行融合,使全局特征引导局部特征更好地重构HDR图像。此外,我们设计了混合损失函数,包括多尺度像素损失、颜色相似损失和梯度损失,共同训练我们的网络。与其他先进方法进行了对比实验,结果表明本方法具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual-Streams Global Guided Learning for High Dynamic Range Image Reconstruction
High dynamic range (HDR) images capture the luminance information of the real world and have more detailed information than low dynamic range (LDR) images. In this paper, we propose a dual-streams global guided end-to-end learning method to reconstruct HDR image from a single LDR input that combines both global information and local image features. In our framework, global features and local features are separately learned in dual-streams branches. In the reconstructed phase, we use a fusion layer to fuse them so that the global features can guide the local features to better reconstruct the HDR image. Furthermore, we design mixed loss function including multi-scale pixel-wise loss, color similarity loss and gradient loss to jointly train our network. Comparative experiments are carried out with other state-of-the-art methods and our method achieves superior performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信