在加权naïve贝叶斯分类器中设置属性的混合权值

Chao Geng, Hao-Ying Guan, Hai-tao Liu
{"title":"在加权naïve贝叶斯分类器中设置属性的混合权值","authors":"Chao Geng, Hao-Ying Guan, Hai-tao Liu","doi":"10.1109/ICMLC.2011.6016776","DOIUrl":null,"url":null,"abstract":"In this paper, a modified naïve Bayesian classifier with hybrid-weight (NBCH) is proposed. NBCH arranges a weight for each condition attribute by considering the gain ratio and correlation coefficient. The gain ration is used to measure the effectiveness of a condition attribute in the classification task. And, the correlation coefficient is designed to depict the linear dependence between condition attribute and decision attribute. Our strategy calculates the hybrid of gain ration and correlation coefficient and uses this hybrid as the weight of given condition attribute. In order to validate the feasibility and effectiveness of NBCH, we experimentally compare our method with standard naïve Bayesian classifier (NBC), NBC with gain ratio weight (NBCGR), and NBC with correlation coefficient weight (NBCCC) on 10 UCI datasets. And, a statistical analysis is also given. The final results show that NBCH can obtain the statistically best classification accuracy.","PeriodicalId":228516,"journal":{"name":"2011 International Conference on Machine Learning and Cybernetics","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Arranging a hybrid-weight for attribute in weighted naïve Bayesian classifier\",\"authors\":\"Chao Geng, Hao-Ying Guan, Hai-tao Liu\",\"doi\":\"10.1109/ICMLC.2011.6016776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a modified naïve Bayesian classifier with hybrid-weight (NBCH) is proposed. NBCH arranges a weight for each condition attribute by considering the gain ratio and correlation coefficient. The gain ration is used to measure the effectiveness of a condition attribute in the classification task. And, the correlation coefficient is designed to depict the linear dependence between condition attribute and decision attribute. Our strategy calculates the hybrid of gain ration and correlation coefficient and uses this hybrid as the weight of given condition attribute. In order to validate the feasibility and effectiveness of NBCH, we experimentally compare our method with standard naïve Bayesian classifier (NBC), NBC with gain ratio weight (NBCGR), and NBC with correlation coefficient weight (NBCCC) on 10 UCI datasets. And, a statistical analysis is also given. The final results show that NBCH can obtain the statistically best classification accuracy.\",\"PeriodicalId\":228516,\"journal\":{\"name\":\"2011 International Conference on Machine Learning and Cybernetics\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2011.6016776\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2011.6016776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种改进的naïve混合权贝叶斯分类器(NBCH)。NBCH通过考虑增益比和相关系数,为每个条件属性分配权重。增益比用于衡量分类任务中条件属性的有效性。设计相关系数来描述条件属性与决策属性之间的线性关系。该策略计算增益比和相关系数的混合,并将该混合作为给定条件属性的权重。为了验证NBCH方法的可行性和有效性,我们在10个UCI数据集上与标准naïve贝叶斯分类器(NBC)、增益比权值(NBCGR)和相关系数权值(NBCCC)进行了实验比较。并进行了统计分析。最终结果表明,NBCH在统计上可以获得最好的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Arranging a hybrid-weight for attribute in weighted naïve Bayesian classifier
In this paper, a modified naïve Bayesian classifier with hybrid-weight (NBCH) is proposed. NBCH arranges a weight for each condition attribute by considering the gain ratio and correlation coefficient. The gain ration is used to measure the effectiveness of a condition attribute in the classification task. And, the correlation coefficient is designed to depict the linear dependence between condition attribute and decision attribute. Our strategy calculates the hybrid of gain ration and correlation coefficient and uses this hybrid as the weight of given condition attribute. In order to validate the feasibility and effectiveness of NBCH, we experimentally compare our method with standard naïve Bayesian classifier (NBC), NBC with gain ratio weight (NBCGR), and NBC with correlation coefficient weight (NBCCC) on 10 UCI datasets. And, a statistical analysis is also given. The final results show that NBCH can obtain the statistically best classification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信