{"title":"纳米材料","authors":"이 익모, 진 인주","doi":"10.5772/1371","DOIUrl":null,"url":null,"abstract":": In this paper, the growth mechanism, structure, growth processes, growth kinetics, and optical, vibronic and electronic properties of metallocene-filled single-walled carbon nanotubes (SWCNTs) are considered. A description of the procedures used to fill the nanotubes is provided. An investigation of doping effects on metallicity-mixed SWCNTs filled with metallocenes by Raman spectroscopy, near edge X-ray absorption fine structure spectroscopy, photoemission spectroscopy, and optical absorption spectroscopy is described. The studies of doping effects on metallicity-sorted SWCNTs filled with metallocenes are discussed. Doping effects in metallicity-mixed and sorted SWCNTs upon the chemical transformation of encapsulated molecules are analyzed. A discussion of the modification of the electronic properties of filled SWCNTs is presented. Applications of metallocene-filled SWCNTs in electrochemistry, thermoelectric power generation, chemical sensors","PeriodicalId":411953,"journal":{"name":"Bionanotechnology","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"323","resultStr":"{\"title\":\"Nanomaterials\",\"authors\":\"이 익모, 진 인주\",\"doi\":\"10.5772/1371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": In this paper, the growth mechanism, structure, growth processes, growth kinetics, and optical, vibronic and electronic properties of metallocene-filled single-walled carbon nanotubes (SWCNTs) are considered. A description of the procedures used to fill the nanotubes is provided. An investigation of doping effects on metallicity-mixed SWCNTs filled with metallocenes by Raman spectroscopy, near edge X-ray absorption fine structure spectroscopy, photoemission spectroscopy, and optical absorption spectroscopy is described. The studies of doping effects on metallicity-sorted SWCNTs filled with metallocenes are discussed. Doping effects in metallicity-mixed and sorted SWCNTs upon the chemical transformation of encapsulated molecules are analyzed. A discussion of the modification of the electronic properties of filled SWCNTs is presented. Applications of metallocene-filled SWCNTs in electrochemistry, thermoelectric power generation, chemical sensors\",\"PeriodicalId\":411953,\"journal\":{\"name\":\"Bionanotechnology\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"323\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bionanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/1371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bionanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/1371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
: In this paper, the growth mechanism, structure, growth processes, growth kinetics, and optical, vibronic and electronic properties of metallocene-filled single-walled carbon nanotubes (SWCNTs) are considered. A description of the procedures used to fill the nanotubes is provided. An investigation of doping effects on metallicity-mixed SWCNTs filled with metallocenes by Raman spectroscopy, near edge X-ray absorption fine structure spectroscopy, photoemission spectroscopy, and optical absorption spectroscopy is described. The studies of doping effects on metallicity-sorted SWCNTs filled with metallocenes are discussed. Doping effects in metallicity-mixed and sorted SWCNTs upon the chemical transformation of encapsulated molecules are analyzed. A discussion of the modification of the electronic properties of filled SWCNTs is presented. Applications of metallocene-filled SWCNTs in electrochemistry, thermoelectric power generation, chemical sensors