lsb匹配隐写术的压缩图像隐写分析

O. Juarez-Sandoval, M. Cedillo-Hernández, G. Sánchez-Pérez, K. Toscano-Medina, H. Meana, M. Nakano-Miyatake
{"title":"lsb匹配隐写术的压缩图像隐写分析","authors":"O. Juarez-Sandoval, M. Cedillo-Hernández, G. Sánchez-Pérez, K. Toscano-Medina, H. Meana, M. Nakano-Miyatake","doi":"10.1109/IWBF.2017.7935103","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a compact image steganalysis method for the LSB-matching steganography, in which a feature vector composed by only 12 elements is extracted from the image. We analyze the statistical artifact occurred in images when a secret data is embedded in it by the LSB-matching steganography. We selected 12 most relevant features based on the probability density function (PDF) of difference of adjacent pixels and the co-occurrence matrix of the image, which can distinguish stegoimages from the natural images. The Support Vector Machine (SVM) is employed as classifier using the training vectors with 12 elements. The experimental results show that the proposed scheme provides a better discriminate performance than previously proposed methods that require a larger amount of feature elements, such as 27, 35 and 225 feature elements, respectively, for their discriminations.","PeriodicalId":111316,"journal":{"name":"2017 5th International Workshop on Biometrics and Forensics (IWBF)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Compact image steganalysis for LSB-matching steganography\",\"authors\":\"O. Juarez-Sandoval, M. Cedillo-Hernández, G. Sánchez-Pérez, K. Toscano-Medina, H. Meana, M. Nakano-Miyatake\",\"doi\":\"10.1109/IWBF.2017.7935103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a compact image steganalysis method for the LSB-matching steganography, in which a feature vector composed by only 12 elements is extracted from the image. We analyze the statistical artifact occurred in images when a secret data is embedded in it by the LSB-matching steganography. We selected 12 most relevant features based on the probability density function (PDF) of difference of adjacent pixels and the co-occurrence matrix of the image, which can distinguish stegoimages from the natural images. The Support Vector Machine (SVM) is employed as classifier using the training vectors with 12 elements. The experimental results show that the proposed scheme provides a better discriminate performance than previously proposed methods that require a larger amount of feature elements, such as 27, 35 and 225 feature elements, respectively, for their discriminations.\",\"PeriodicalId\":111316,\"journal\":{\"name\":\"2017 5th International Workshop on Biometrics and Forensics (IWBF)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 5th International Workshop on Biometrics and Forensics (IWBF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWBF.2017.7935103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 5th International Workshop on Biometrics and Forensics (IWBF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWBF.2017.7935103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文提出了一种用于lsb匹配隐写的压缩图像隐写分析方法,该方法从图像中提取仅由12个元素组成的特征向量。利用lsb匹配隐写技术分析了在图像中嵌入秘密数据时产生的统计伪影。基于相邻像素差的概率密度函数(PDF)和图像的共现矩阵,我们选择了12个最相关的特征,可以将隐写图像与自然图像区分开来。利用12个元素的训练向量,采用支持向量机(SVM)作为分类器。实验结果表明,该方法比以往提出的特征元素数量较多的方法(分别为27、35和225个特征元素)具有更好的识别性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compact image steganalysis for LSB-matching steganography
In this paper, we propose a compact image steganalysis method for the LSB-matching steganography, in which a feature vector composed by only 12 elements is extracted from the image. We analyze the statistical artifact occurred in images when a secret data is embedded in it by the LSB-matching steganography. We selected 12 most relevant features based on the probability density function (PDF) of difference of adjacent pixels and the co-occurrence matrix of the image, which can distinguish stegoimages from the natural images. The Support Vector Machine (SVM) is employed as classifier using the training vectors with 12 elements. The experimental results show that the proposed scheme provides a better discriminate performance than previously proposed methods that require a larger amount of feature elements, such as 27, 35 and 225 feature elements, respectively, for their discriminations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信