基于ICA特征提取的蛋白质二级结构预测

J. Melo, George D. C. Cavalcanti, K. Guimaraes
{"title":"基于ICA特征提取的蛋白质二级结构预测","authors":"J. Melo, George D. C. Cavalcanti, K. Guimaraes","doi":"10.1109/NNSP.2003.1318000","DOIUrl":null,"url":null,"abstract":"An original application of the independent component analysis (ICA) is presented in this work. This linear transformation method is used for feature extraction for a machine learning approach to the protein secondary structure prediction problem. PSI-blast profiles, built on NCBI's nonredundant protein database, have their dimensionality reduced through ICA method. The resulting components are used as input data to three artificial neural networks with 30, 35 or 40 nodes in the hidden layer. Those classifiers are trained with the RPROP algorithm and five rules are used for the combination of their outputs. The results achieved are compared with the best ones recently obtained in similar conditions, including experiments using principal component analysis (PCA) as feature extraction method, presenting the best result. The performance of each network individually achieved a Q/sub 3/ accuracy of 74.1% on average, using only 120 independent components. When the networks are combined with the product rule the performance achieved is 75.2%. This result is overcome only when the raw data are informed to the networks, when an accuracy of 75.9% is achieved.","PeriodicalId":315958,"journal":{"name":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Protein secondary structure prediction with ICA feature extraction\",\"authors\":\"J. Melo, George D. C. Cavalcanti, K. Guimaraes\",\"doi\":\"10.1109/NNSP.2003.1318000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An original application of the independent component analysis (ICA) is presented in this work. This linear transformation method is used for feature extraction for a machine learning approach to the protein secondary structure prediction problem. PSI-blast profiles, built on NCBI's nonredundant protein database, have their dimensionality reduced through ICA method. The resulting components are used as input data to three artificial neural networks with 30, 35 or 40 nodes in the hidden layer. Those classifiers are trained with the RPROP algorithm and five rules are used for the combination of their outputs. The results achieved are compared with the best ones recently obtained in similar conditions, including experiments using principal component analysis (PCA) as feature extraction method, presenting the best result. The performance of each network individually achieved a Q/sub 3/ accuracy of 74.1% on average, using only 120 independent components. When the networks are combined with the product rule the performance achieved is 75.2%. This result is overcome only when the raw data are informed to the networks, when an accuracy of 75.9% is achieved.\",\"PeriodicalId\":315958,\"journal\":{\"name\":\"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.2003.1318000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2003.1318000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了独立分量分析(ICA)的一个原始应用。该线性变换方法用于蛋白质二级结构预测问题的机器学习方法的特征提取。在NCBI的非冗余蛋白数据库中建立PSI-blast序列,通过ICA方法对其进行降维。所得到的组件被用作三个人工神经网络的输入数据,这些网络在隐藏层中有30、35或40个节点。这些分类器使用RPROP算法进行训练,并使用五个规则来组合它们的输出。将所获得的结果与近年来在相似条件下的最佳结果进行了比较,包括采用主成分分析(PCA)作为特征提取方法的实验,得到了最佳结果。在仅使用120个独立组件的情况下,每个网络的性能达到了平均74.1%的Q/sub /精度。当网络与乘积法则相结合时,性能达到75.2%。只有当原始数据被告知网络时,这个结果才会被克服,准确率达到75.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Protein secondary structure prediction with ICA feature extraction
An original application of the independent component analysis (ICA) is presented in this work. This linear transformation method is used for feature extraction for a machine learning approach to the protein secondary structure prediction problem. PSI-blast profiles, built on NCBI's nonredundant protein database, have their dimensionality reduced through ICA method. The resulting components are used as input data to three artificial neural networks with 30, 35 or 40 nodes in the hidden layer. Those classifiers are trained with the RPROP algorithm and five rules are used for the combination of their outputs. The results achieved are compared with the best ones recently obtained in similar conditions, including experiments using principal component analysis (PCA) as feature extraction method, presenting the best result. The performance of each network individually achieved a Q/sub 3/ accuracy of 74.1% on average, using only 120 independent components. When the networks are combined with the product rule the performance achieved is 75.2%. This result is overcome only when the raw data are informed to the networks, when an accuracy of 75.9% is achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信