一个PHOC解码器的无词典手写字识别

Giorgos Sfikas, George Retsinas, B. Gatos
{"title":"一个PHOC解码器的无词典手写字识别","authors":"Giorgos Sfikas, George Retsinas, B. Gatos","doi":"10.1109/ICDAR.2017.90","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel probabilistic model for lexicon-free handwriting recognition. Model inputs are word images encoded as Pyramidal Histogram Of Character (PHOC) vectors. PHOC vectors have been used as efficient attribute-based, multi-resolution representations of either text strings or word image contents. The proposed model formulates PHOC decoding as the problem of finding the most probable sequence of characters corresponding to the given PHOC. We model PHOC layers as Beta-distributed observations, linked to hidden states that correspond to character estimates. Characters are in turn linked to one another along a Markov chain, encoding language model information. The sequence of characters is estimated using the max-sum algorithm in a process that is akin to Viterbi decoding. Numerical experiments on the well-known George Washington database show competitive recognition results.","PeriodicalId":433676,"journal":{"name":"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A PHOC Decoder for Lexicon-Free Handwritten Word Recognition\",\"authors\":\"Giorgos Sfikas, George Retsinas, B. Gatos\",\"doi\":\"10.1109/ICDAR.2017.90\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel probabilistic model for lexicon-free handwriting recognition. Model inputs are word images encoded as Pyramidal Histogram Of Character (PHOC) vectors. PHOC vectors have been used as efficient attribute-based, multi-resolution representations of either text strings or word image contents. The proposed model formulates PHOC decoding as the problem of finding the most probable sequence of characters corresponding to the given PHOC. We model PHOC layers as Beta-distributed observations, linked to hidden states that correspond to character estimates. Characters are in turn linked to one another along a Markov chain, encoding language model information. The sequence of characters is estimated using the max-sum algorithm in a process that is akin to Viterbi decoding. Numerical experiments on the well-known George Washington database show competitive recognition results.\",\"PeriodicalId\":433676,\"journal\":{\"name\":\"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2017.90\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2017.90","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们提出了一种新的概率模型用于无词典的手写识别。模型输入是编码为字符的金字塔直方图(PHOC)向量的单词图像。PHOC矢量已被用作文本字符串或文字图像内容的有效的基于属性的多分辨率表示。该模型将PHOC解码描述为寻找与给定PHOC对应的最可能字符序列的问题。我们将PHOC层建模为beta分布的观测值,与对应于特征估计的隐藏状态相关联。字符依次沿着马尔可夫链相互连接,编码语言模型信息。使用最大和算法在类似于维特比解码的过程中估计字符序列。在著名的乔治·华盛顿数据库上进行的数值实验表明,识别结果具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A PHOC Decoder for Lexicon-Free Handwritten Word Recognition
In this paper, we propose a novel probabilistic model for lexicon-free handwriting recognition. Model inputs are word images encoded as Pyramidal Histogram Of Character (PHOC) vectors. PHOC vectors have been used as efficient attribute-based, multi-resolution representations of either text strings or word image contents. The proposed model formulates PHOC decoding as the problem of finding the most probable sequence of characters corresponding to the given PHOC. We model PHOC layers as Beta-distributed observations, linked to hidden states that correspond to character estimates. Characters are in turn linked to one another along a Markov chain, encoding language model information. The sequence of characters is estimated using the max-sum algorithm in a process that is akin to Viterbi decoding. Numerical experiments on the well-known George Washington database show competitive recognition results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信