分位数敏感性估计中广义似然比方法的方差减小

Yijie Peng, M. Fu, Jiaqiao Hu, P. L'Ecuyer, B. Tuffin
{"title":"分位数敏感性估计中广义似然比方法的方差减小","authors":"Yijie Peng, M. Fu, Jiaqiao Hu, P. L'Ecuyer, B. Tuffin","doi":"10.1109/WSC52266.2021.9715488","DOIUrl":null,"url":null,"abstract":"We apply the generalized likelihood ratio (GLR) methods in Peng et al. (2018) and Peng et al. (2021) to estimate quantile sensitivities. Conditional Monte Carlo and randomized quasi-Monte Carlo methods are used to reduce the variance of the GLR estimators. The proposed methods are applied to a toy example and a stochastic activity network example. Numerical results show that the variance reduction is significant.","PeriodicalId":369368,"journal":{"name":"2021 Winter Simulation Conference (WSC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Variance Reduction for Generalized Likelihood Ratio Method in Quantile Sensitivity Estimation\",\"authors\":\"Yijie Peng, M. Fu, Jiaqiao Hu, P. L'Ecuyer, B. Tuffin\",\"doi\":\"10.1109/WSC52266.2021.9715488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We apply the generalized likelihood ratio (GLR) methods in Peng et al. (2018) and Peng et al. (2021) to estimate quantile sensitivities. Conditional Monte Carlo and randomized quasi-Monte Carlo methods are used to reduce the variance of the GLR estimators. The proposed methods are applied to a toy example and a stochastic activity network example. Numerical results show that the variance reduction is significant.\",\"PeriodicalId\":369368,\"journal\":{\"name\":\"2021 Winter Simulation Conference (WSC)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Winter Simulation Conference (WSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC52266.2021.9715488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC52266.2021.9715488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们在Peng et al.(2018)和Peng et al.(2021)中应用广义似然比(GLR)方法来估计分位数敏感性。采用条件蒙特卡罗和随机拟蒙特卡罗方法减小GLR估计量的方差。将所提出的方法应用于一个玩具实例和一个随机活动网络实例。数值结果表明,该方法的方差减小效果显著。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variance Reduction for Generalized Likelihood Ratio Method in Quantile Sensitivity Estimation
We apply the generalized likelihood ratio (GLR) methods in Peng et al. (2018) and Peng et al. (2021) to estimate quantile sensitivities. Conditional Monte Carlo and randomized quasi-Monte Carlo methods are used to reduce the variance of the GLR estimators. The proposed methods are applied to a toy example and a stochastic activity network example. Numerical results show that the variance reduction is significant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信