欧几里得算法的部分求值(扩展版)

O. Danvy, M. Goldberg
{"title":"欧几里得算法的部分求值(扩展版)","authors":"O. Danvy, M. Goldberg","doi":"10.7146/BRICS.V4I1.18780","DOIUrl":null,"url":null,"abstract":"Some programs are easily amenable to partial evaluation because their control flow clearly depends on one of their parameters. Specializing such programs with respect to this parameter eliminates the associated interpretive overhead. Some other programs, however, do not exhibit this interpreter-like behavior. Each of them presents a challenge for partial evaluation. The Euclidian algorithm is one of them, and in this article, we make it amenable to partial evaluation. We observe that the number of iterations in the Euclidian algorithm is bounded by a number that can be computed given either of the two arguments. We thus rephrase this algorithm using bounded recursion. The resulting program is better suited for automatic unfolding and thus for partial evaluation. Its specialization is efficient. Keywords: partial evaluation, scientific computation.","PeriodicalId":365207,"journal":{"name":"Higher-order and Symbolic Computation \\/ Lisp and Symbolic Computation","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Partial Evaluation of the Euclidian Algorithm (extended version)\",\"authors\":\"O. Danvy, M. Goldberg\",\"doi\":\"10.7146/BRICS.V4I1.18780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Some programs are easily amenable to partial evaluation because their control flow clearly depends on one of their parameters. Specializing such programs with respect to this parameter eliminates the associated interpretive overhead. Some other programs, however, do not exhibit this interpreter-like behavior. Each of them presents a challenge for partial evaluation. The Euclidian algorithm is one of them, and in this article, we make it amenable to partial evaluation. We observe that the number of iterations in the Euclidian algorithm is bounded by a number that can be computed given either of the two arguments. We thus rephrase this algorithm using bounded recursion. The resulting program is better suited for automatic unfolding and thus for partial evaluation. Its specialization is efficient. Keywords: partial evaluation, scientific computation.\",\"PeriodicalId\":365207,\"journal\":{\"name\":\"Higher-order and Symbolic Computation \\\\/ Lisp and Symbolic Computation\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Higher-order and Symbolic Computation \\\\/ Lisp and Symbolic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7146/BRICS.V4I1.18780\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Higher-order and Symbolic Computation \\/ Lisp and Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7146/BRICS.V4I1.18780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

有些程序很容易接受部分求值,因为它们的控制流显然依赖于它们的一个参数。根据此参数对此类程序进行专门化可以消除相关的解释开销。然而,其他一些程序不表现出这种类似解释器的行为。它们中的每一个都对部分评估提出了挑战。欧几里得算法就是其中之一,在本文中,我们使它适合于部分求值。我们观察到,在欧几里得算法中迭代的次数是由一个给定两个参数中的任意一个都可以计算的数字所限制的。因此,我们用有界递归重新表述这个算法。生成的程序更适合自动展开,因此更适合部分求值。它的专业化是高效的。关键词:部分求值,科学计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Partial Evaluation of the Euclidian Algorithm (extended version)
Some programs are easily amenable to partial evaluation because their control flow clearly depends on one of their parameters. Specializing such programs with respect to this parameter eliminates the associated interpretive overhead. Some other programs, however, do not exhibit this interpreter-like behavior. Each of them presents a challenge for partial evaluation. The Euclidian algorithm is one of them, and in this article, we make it amenable to partial evaluation. We observe that the number of iterations in the Euclidian algorithm is bounded by a number that can be computed given either of the two arguments. We thus rephrase this algorithm using bounded recursion. The resulting program is better suited for automatic unfolding and thus for partial evaluation. Its specialization is efficient. Keywords: partial evaluation, scientific computation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信