非参数统计

D. Mood, James R. Morrow, Matthew B. McQueen
{"title":"非参数统计","authors":"D. Mood, James R. Morrow, Matthew B. McQueen","doi":"10.4324/9781351211062-15","DOIUrl":null,"url":null,"abstract":"In light of Cohen (Ann Math Stat 37:458–463, 1966) and Rao (Ann Stat 4:1023–1037, 1976), who provide necessary and sufficient conditions for admissibility of linear smoothers, one realizes that many of the well-known linear nonparametric regression smoothers are inadmissible because either the smoothing matrix is asymmetric or the spectrum of the smoothing matrix lies outside the unit interval [0, 1]. The question answered in this chapter is how can an inadmissible smoother transformed into an admissible one? Specifically, this contribution investigates the spectrum of various matrix symmetrization schemes for k-nearest neighbor-type smoothers. This is not an easy task, as the spectrum of many traditional symmetrization schemes fails to lie in the unit interval. The contribution of this study is to present a symmetrization scheme for smoothing matrices that make the associated estimator admissible. For k-nearest neighbor smoothers, the result of the transformation has a natural interpretation in terms of graph theory. P.-A. Cornillon University of Rennes, IRMAR UMR 6625, Rennes, France e-mail: pac@univ-rennes2.fr A. Gribinski Department of Mathematics, Princeton University, Princeton, NJ, USA e-mail: aurelien.gribinski@princeton.edu N. Hengartner Los Alamos National Laboratory, Los Alamos, NM, USA e-mail: nickh@lanl.gov T. Kerdreux UMR 8548, Ecole Normale Supérieure, Paris, France e-mail: thomas.kerdreux@inria.fr E. Matzner-Løber ( ) CREST, UMR 9194, Cepe-Ensae, Palaiseau, France e-mail: eml@ensae.fr © Springer Nature Switzerland AG 2018 P. Bertail et al. (eds.), Nonparametric Statistics, Springer Proceedings in Mathematics & Statistics 250, https://doi.org/10.1007/978-3-319-96941-1_1 1 2 P.-A. Cornillon et al.","PeriodicalId":424691,"journal":{"name":"Introduction to Statistics in Human Performance","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonparametric Statistics\",\"authors\":\"D. Mood, James R. Morrow, Matthew B. McQueen\",\"doi\":\"10.4324/9781351211062-15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In light of Cohen (Ann Math Stat 37:458–463, 1966) and Rao (Ann Stat 4:1023–1037, 1976), who provide necessary and sufficient conditions for admissibility of linear smoothers, one realizes that many of the well-known linear nonparametric regression smoothers are inadmissible because either the smoothing matrix is asymmetric or the spectrum of the smoothing matrix lies outside the unit interval [0, 1]. The question answered in this chapter is how can an inadmissible smoother transformed into an admissible one? Specifically, this contribution investigates the spectrum of various matrix symmetrization schemes for k-nearest neighbor-type smoothers. This is not an easy task, as the spectrum of many traditional symmetrization schemes fails to lie in the unit interval. The contribution of this study is to present a symmetrization scheme for smoothing matrices that make the associated estimator admissible. For k-nearest neighbor smoothers, the result of the transformation has a natural interpretation in terms of graph theory. P.-A. Cornillon University of Rennes, IRMAR UMR 6625, Rennes, France e-mail: pac@univ-rennes2.fr A. Gribinski Department of Mathematics, Princeton University, Princeton, NJ, USA e-mail: aurelien.gribinski@princeton.edu N. Hengartner Los Alamos National Laboratory, Los Alamos, NM, USA e-mail: nickh@lanl.gov T. Kerdreux UMR 8548, Ecole Normale Supérieure, Paris, France e-mail: thomas.kerdreux@inria.fr E. Matzner-Løber ( ) CREST, UMR 9194, Cepe-Ensae, Palaiseau, France e-mail: eml@ensae.fr © Springer Nature Switzerland AG 2018 P. Bertail et al. (eds.), Nonparametric Statistics, Springer Proceedings in Mathematics & Statistics 250, https://doi.org/10.1007/978-3-319-96941-1_1 1 2 P.-A. Cornillon et al.\",\"PeriodicalId\":424691,\"journal\":{\"name\":\"Introduction to Statistics in Human Performance\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Introduction to Statistics in Human Performance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4324/9781351211062-15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Introduction to Statistics in Human Performance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4324/9781351211062-15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

根据Cohen (Ann Math Stat 37:458-463, 1966)和Rao (Ann Stat 4:1023-1037, 1976)提供的线性平滑可容许性的充分必要条件,人们认识到许多众所周知的线性非参数回归平滑是不可容许的,因为平滑矩阵是不对称的,或者平滑矩阵的谱在单位区间之外[0,1]。本章要回答的问题是,不可采信的平滑如何转化为可采信的平滑?具体来说,本文研究了k近邻型平滑器的各种矩阵对称方案的谱。这不是一项容易的任务,因为许多传统的对称方案的频谱不能在单位区间内。本研究的贡献在于提出一种平滑矩阵的对称方案,使相关估计量可接受。对于k近邻平滑点,变换的结果在图论中有一个自然的解释。中国。科尼永雷恩大学,IRMAR UMR 6625,雷恩,法国e-mail: pac@univ-rennes2.fr美国普林斯顿普林斯顿大学数学系A. Gribinski e-mail: aurelien.gribinski@princeton.edu美国新泽西州洛斯阿拉莫斯洛斯阿拉莫斯国家实验室N. Hengartner e-mail: nickh@lanl.gov法国巴黎高等师范学院UMR 8548, T. Kerdreux e-mail: thomas.kerdreux@inria.fr E. Matzner-Løber () CREST, UMR 9194,法国帕莱索Cepe-Ensae e-mail:eml@ensae.fr©Springer Nature Switzerland AG 2018 P. Bertail et al.(编辑),非参数统计,Springer Proceedings in Mathematics & Statistics 250, https://doi.org/10.1007/978-3-319-96941-1_1 1 2 P. a。Cornillon等人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonparametric Statistics
In light of Cohen (Ann Math Stat 37:458–463, 1966) and Rao (Ann Stat 4:1023–1037, 1976), who provide necessary and sufficient conditions for admissibility of linear smoothers, one realizes that many of the well-known linear nonparametric regression smoothers are inadmissible because either the smoothing matrix is asymmetric or the spectrum of the smoothing matrix lies outside the unit interval [0, 1]. The question answered in this chapter is how can an inadmissible smoother transformed into an admissible one? Specifically, this contribution investigates the spectrum of various matrix symmetrization schemes for k-nearest neighbor-type smoothers. This is not an easy task, as the spectrum of many traditional symmetrization schemes fails to lie in the unit interval. The contribution of this study is to present a symmetrization scheme for smoothing matrices that make the associated estimator admissible. For k-nearest neighbor smoothers, the result of the transformation has a natural interpretation in terms of graph theory. P.-A. Cornillon University of Rennes, IRMAR UMR 6625, Rennes, France e-mail: pac@univ-rennes2.fr A. Gribinski Department of Mathematics, Princeton University, Princeton, NJ, USA e-mail: aurelien.gribinski@princeton.edu N. Hengartner Los Alamos National Laboratory, Los Alamos, NM, USA e-mail: nickh@lanl.gov T. Kerdreux UMR 8548, Ecole Normale Supérieure, Paris, France e-mail: thomas.kerdreux@inria.fr E. Matzner-Løber ( ) CREST, UMR 9194, Cepe-Ensae, Palaiseau, France e-mail: eml@ensae.fr © Springer Nature Switzerland AG 2018 P. Bertail et al. (eds.), Nonparametric Statistics, Springer Proceedings in Mathematics & Statistics 250, https://doi.org/10.1007/978-3-319-96941-1_1 1 2 P.-A. Cornillon et al.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信