电网支持下光伏逆变器对异常电网条件响应的实验评估

A. Nelson, G. Martin, James Hurtt
{"title":"电网支持下光伏逆变器对异常电网条件响应的实验评估","authors":"A. Nelson, G. Martin, James Hurtt","doi":"10.1109/ISGT.2017.8086016","DOIUrl":null,"url":null,"abstract":"As revised interconnection standards for grid-tied photovoltaic (PV) inverters address new advanced grid support functions (GSFs), there is increasing interest in inverter performance in the case of abnormal grid conditions. The growth of GSF-enabled inverters has outpaced the industry standards that define their operation, although recently published updates to UL1741 Supplement SA define test conditions for GSFs such as volt-var control, frequency-watt control, and voltage/frequency ride-through, among others. This paper describes the results of a comparative experimental evaluation on four commercially available, three-phase PV inverters in the 24.0–39.8 kVA power range on their GSF capability and its effect on abnormal grid condition response. The evaluation examined the impact particular GSF implementations have on run-on times during islanding conditions, peak voltages in load rejection overvoltage scenarios, and peak currents during single-phase and three-phase fault events for individual inverters. Testing results indicated a wide variance in the performance of GSF enabled inverters to various test cases.","PeriodicalId":296398,"journal":{"name":"2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Experimental evaluation of grid support enabled PV inverter response to abnormal grid conditions\",\"authors\":\"A. Nelson, G. Martin, James Hurtt\",\"doi\":\"10.1109/ISGT.2017.8086016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As revised interconnection standards for grid-tied photovoltaic (PV) inverters address new advanced grid support functions (GSFs), there is increasing interest in inverter performance in the case of abnormal grid conditions. The growth of GSF-enabled inverters has outpaced the industry standards that define their operation, although recently published updates to UL1741 Supplement SA define test conditions for GSFs such as volt-var control, frequency-watt control, and voltage/frequency ride-through, among others. This paper describes the results of a comparative experimental evaluation on four commercially available, three-phase PV inverters in the 24.0–39.8 kVA power range on their GSF capability and its effect on abnormal grid condition response. The evaluation examined the impact particular GSF implementations have on run-on times during islanding conditions, peak voltages in load rejection overvoltage scenarios, and peak currents during single-phase and three-phase fault events for individual inverters. Testing results indicated a wide variance in the performance of GSF enabled inverters to various test cases.\",\"PeriodicalId\":296398,\"journal\":{\"name\":\"2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGT.2017.8086016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGT.2017.8086016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

随着并网光伏(PV)逆变器的修订互联标准解决了新的先进电网支持功能(gsf),人们对异常电网条件下逆变器性能的兴趣日益增加。支持gsf的逆变器的增长速度超过了定义其运行的行业标准,尽管最近发布的UL1741补充SA更新定义了gsf的测试条件,如电压无功控制、频率瓦特控制和电压/频率穿越等。本文介绍了在24.0 ~ 39.8 kVA功率范围内,对4种市售三相光伏逆变器的GSF能力及其对电网异常状态响应的影响进行对比实验评估的结果。评估检查了特定GSF实施对孤岛条件下的运行时间、负载抛弃过电压情况下的峰值电压以及单个逆变器单相和三相故障事件时的峰值电流的影响。测试结果表明,在各种测试用例中,支持GSF的逆变器的性能差异很大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental evaluation of grid support enabled PV inverter response to abnormal grid conditions
As revised interconnection standards for grid-tied photovoltaic (PV) inverters address new advanced grid support functions (GSFs), there is increasing interest in inverter performance in the case of abnormal grid conditions. The growth of GSF-enabled inverters has outpaced the industry standards that define their operation, although recently published updates to UL1741 Supplement SA define test conditions for GSFs such as volt-var control, frequency-watt control, and voltage/frequency ride-through, among others. This paper describes the results of a comparative experimental evaluation on four commercially available, three-phase PV inverters in the 24.0–39.8 kVA power range on their GSF capability and its effect on abnormal grid condition response. The evaluation examined the impact particular GSF implementations have on run-on times during islanding conditions, peak voltages in load rejection overvoltage scenarios, and peak currents during single-phase and three-phase fault events for individual inverters. Testing results indicated a wide variance in the performance of GSF enabled inverters to various test cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信