不对称内存栅栏:优化性能和可实现性

Yuelu Duan, N. Honarmand, J. Torrellas
{"title":"不对称内存栅栏:优化性能和可实现性","authors":"Yuelu Duan, N. Honarmand, J. Torrellas","doi":"10.1145/2694344.2694388","DOIUrl":null,"url":null,"abstract":"There have been several recent efforts to improve the performance of fences. The most aggressive designs allow post-fence accesses to retire and complete before the fence completes. Unfortunately, such designs present implementation difficulties due to their reliance on global state and structures. This paper's goal is to optimize both the performance and the implementability of fences. We start-off with a design like the most aggressive ones but without the global state. We call it Weak Fence or wF. Since the concurrent execution of multiple wFs can deadlock, we combine wFs with a conventional fence (i.e., Strong Fence or sF) for the less performance-critical thread(s). We call the result an Asymmetric fence group. We also propose a taxonomy of Asymmetric fence groups under TSO. Compared to past aggressive fences, Asymmetric fence groups both are substantially easier to implement and have higher average performance. The two main designs presented (WS+ and W+) speed-up workloads under TSO by an average of 13% and 21%, respectively, over conventional fences.","PeriodicalId":403247,"journal":{"name":"Proceedings of the Twentieth International Conference on Architectural Support for Programming Languages and Operating Systems","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Asymmetric Memory Fences: Optimizing Both Performance and Implementability\",\"authors\":\"Yuelu Duan, N. Honarmand, J. Torrellas\",\"doi\":\"10.1145/2694344.2694388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There have been several recent efforts to improve the performance of fences. The most aggressive designs allow post-fence accesses to retire and complete before the fence completes. Unfortunately, such designs present implementation difficulties due to their reliance on global state and structures. This paper's goal is to optimize both the performance and the implementability of fences. We start-off with a design like the most aggressive ones but without the global state. We call it Weak Fence or wF. Since the concurrent execution of multiple wFs can deadlock, we combine wFs with a conventional fence (i.e., Strong Fence or sF) for the less performance-critical thread(s). We call the result an Asymmetric fence group. We also propose a taxonomy of Asymmetric fence groups under TSO. Compared to past aggressive fences, Asymmetric fence groups both are substantially easier to implement and have higher average performance. The two main designs presented (WS+ and W+) speed-up workloads under TSO by an average of 13% and 21%, respectively, over conventional fences.\",\"PeriodicalId\":403247,\"journal\":{\"name\":\"Proceedings of the Twentieth International Conference on Architectural Support for Programming Languages and Operating Systems\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Twentieth International Conference on Architectural Support for Programming Languages and Operating Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2694344.2694388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twentieth International Conference on Architectural Support for Programming Languages and Operating Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2694344.2694388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

最近已经有几项努力来提高围栏的性能。最激进的设计允许栅栏后通道在栅栏完成之前退出并完成。不幸的是,这种设计由于依赖全局状态和结构而存在实现困难。本文的目标是优化篱笆的性能和可实现性。我们从最具侵略性的设计开始,但没有全局状态。我们称之为弱围栏或wF。由于多个wf的并发执行可能会死锁,因此我们将wf与传统的栅栏(即Strong fence或sF)结合起来,用于性能不太关键的线程。我们称这种结果为不对称栅栏群。我们还提出了TSO下不对称栅栏群的分类方法。与过去的侵略性围栏相比,非对称围栏组更容易实现,并且具有更高的平均性能。提出的两种主要设计(WS+和W+)在TSO下的工作负载速度比传统篱笆平均分别提高13%和21%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymmetric Memory Fences: Optimizing Both Performance and Implementability
There have been several recent efforts to improve the performance of fences. The most aggressive designs allow post-fence accesses to retire and complete before the fence completes. Unfortunately, such designs present implementation difficulties due to their reliance on global state and structures. This paper's goal is to optimize both the performance and the implementability of fences. We start-off with a design like the most aggressive ones but without the global state. We call it Weak Fence or wF. Since the concurrent execution of multiple wFs can deadlock, we combine wFs with a conventional fence (i.e., Strong Fence or sF) for the less performance-critical thread(s). We call the result an Asymmetric fence group. We also propose a taxonomy of Asymmetric fence groups under TSO. Compared to past aggressive fences, Asymmetric fence groups both are substantially easier to implement and have higher average performance. The two main designs presented (WS+ and W+) speed-up workloads under TSO by an average of 13% and 21%, respectively, over conventional fences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信