基于拓扑和亲和性的分层分布式负载均衡

E. Jeannot, Guillaume Mercier, François Tessier
{"title":"基于拓扑和亲和性的分层分布式负载均衡","authors":"E. Jeannot, Guillaume Mercier, François Tessier","doi":"10.1109/COM-HPC.2016.12","DOIUrl":null,"url":null,"abstract":"The evolution of massively parallel supercomputers make palpable two issues in particular: the load imbalance and the poor management of data locality in applications. Thus, with the increase of the number of cores and the drastic decrease of amount of memory per core, the large performance needs imply to particularly take care of the load-balancing and as much as possible of the locality of data. One mean to take into account this locality issue relies on the placement of the processing entities and load balancing techniques are relevant in order to improve application performance. With large-scale platforms in mind, we developed a hierarchical and distributed algorithm which aim is to perform a topology-aware load balancing tailored for Charm++ applications. This algorithm is based on both LibTopoMap for the network awareness aspects and on TREEMATCH to determine a relevant placement of the processing entities. We show that the proposed algorithm improves the overall execution time in both the cases of real applications and a synthetic benchmark as well. For this last experiment, we show a scalability up to one millions processing entities.","PeriodicalId":332852,"journal":{"name":"2016 First International Workshop on Communication Optimizations in HPC (COMHPC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Topology and Affinity Aware Hierarchical and Distributed Load-Balancing in Charm++\",\"authors\":\"E. Jeannot, Guillaume Mercier, François Tessier\",\"doi\":\"10.1109/COM-HPC.2016.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The evolution of massively parallel supercomputers make palpable two issues in particular: the load imbalance and the poor management of data locality in applications. Thus, with the increase of the number of cores and the drastic decrease of amount of memory per core, the large performance needs imply to particularly take care of the load-balancing and as much as possible of the locality of data. One mean to take into account this locality issue relies on the placement of the processing entities and load balancing techniques are relevant in order to improve application performance. With large-scale platforms in mind, we developed a hierarchical and distributed algorithm which aim is to perform a topology-aware load balancing tailored for Charm++ applications. This algorithm is based on both LibTopoMap for the network awareness aspects and on TREEMATCH to determine a relevant placement of the processing entities. We show that the proposed algorithm improves the overall execution time in both the cases of real applications and a synthetic benchmark as well. For this last experiment, we show a scalability up to one millions processing entities.\",\"PeriodicalId\":332852,\"journal\":{\"name\":\"2016 First International Workshop on Communication Optimizations in HPC (COMHPC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 First International Workshop on Communication Optimizations in HPC (COMHPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COM-HPC.2016.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 First International Workshop on Communication Optimizations in HPC (COMHPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COM-HPC.2016.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

大规模并行超级计算机的发展特别突出了两个问题:负载不平衡和应用程序中数据局部性管理不善。因此,随着核心数量的增加和每个核心内存量的急剧减少,大的性能需要特别注意负载平衡和尽可能多的数据位置。考虑局部性问题的一种方法是依赖于处理实体的位置和与之相关的负载平衡技术,以提高应用程序性能。考虑到大规模平台,我们开发了一种分层和分布式算法,旨在为Charm++应用程序执行拓扑感知负载平衡。该算法基于LibTopoMap(用于网络感知方面)和TREEMATCH(用于确定处理实体的相关位置)。我们证明了所提出的算法在实际应用程序和综合基准测试中都提高了总体执行时间。对于最后一个实验,我们展示了多达一百万个处理实体的可伸缩性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topology and Affinity Aware Hierarchical and Distributed Load-Balancing in Charm++
The evolution of massively parallel supercomputers make palpable two issues in particular: the load imbalance and the poor management of data locality in applications. Thus, with the increase of the number of cores and the drastic decrease of amount of memory per core, the large performance needs imply to particularly take care of the load-balancing and as much as possible of the locality of data. One mean to take into account this locality issue relies on the placement of the processing entities and load balancing techniques are relevant in order to improve application performance. With large-scale platforms in mind, we developed a hierarchical and distributed algorithm which aim is to perform a topology-aware load balancing tailored for Charm++ applications. This algorithm is based on both LibTopoMap for the network awareness aspects and on TREEMATCH to determine a relevant placement of the processing entities. We show that the proposed algorithm improves the overall execution time in both the cases of real applications and a synthetic benchmark as well. For this last experiment, we show a scalability up to one millions processing entities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信