{"title":"分布式谐波与无功补偿器的协同设计与控制","authors":"E. Tedeschi, P. Tenti","doi":"10.1109/ISNCC.2008.4627482","DOIUrl":null,"url":null,"abstract":"A theoretical background for the design and coordinated control of multiple compensation equipment acting in the same network is presented. It makes use of instantaneous power terms which are conservative in every network and naturally extend the usual power definitions to the case of distorted voltages and currents. Based on the theoretical approach, a system-level and equipment-level control algorithm is developed, which allows cooperative operation of static VAR compensators (SVC) and active power filters (APF).","PeriodicalId":143815,"journal":{"name":"2008 International School on Nonsinusoidal Currents and Compensation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Cooperative design and control of distributed harmonic and reactive compensators\",\"authors\":\"E. Tedeschi, P. Tenti\",\"doi\":\"10.1109/ISNCC.2008.4627482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A theoretical background for the design and coordinated control of multiple compensation equipment acting in the same network is presented. It makes use of instantaneous power terms which are conservative in every network and naturally extend the usual power definitions to the case of distorted voltages and currents. Based on the theoretical approach, a system-level and equipment-level control algorithm is developed, which allows cooperative operation of static VAR compensators (SVC) and active power filters (APF).\",\"PeriodicalId\":143815,\"journal\":{\"name\":\"2008 International School on Nonsinusoidal Currents and Compensation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International School on Nonsinusoidal Currents and Compensation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISNCC.2008.4627482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International School on Nonsinusoidal Currents and Compensation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISNCC.2008.4627482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cooperative design and control of distributed harmonic and reactive compensators
A theoretical background for the design and coordinated control of multiple compensation equipment acting in the same network is presented. It makes use of instantaneous power terms which are conservative in every network and naturally extend the usual power definitions to the case of distorted voltages and currents. Based on the theoretical approach, a system-level and equipment-level control algorithm is developed, which allows cooperative operation of static VAR compensators (SVC) and active power filters (APF).