二维大波数衍射问题中的Dirichlet-to-Neumann算子符号

M. Kondratieva, S. Sadov
{"title":"二维大波数衍射问题中的Dirichlet-to-Neumann算子符号","authors":"M. Kondratieva, S. Sadov","doi":"10.1109/DD.2003.238180","DOIUrl":null,"url":null,"abstract":"Consider the Dirichlet-to-Neumann operator N in the exterior problem for the 2D Helmholtz equation outside a bounded domain with smooth boundary. Using parametrization of the boundary by normalized arclength, we treat N as a pseudodifferential operator on the unit circle. We study its discrete symbol. We put, forward a conjecture on the universal behaviour, independent of shape and curvature of the boundary, of the symbol as the wavenumber k /spl rarr/ /spl infin/. The conjecture is motivated by an explicit formula for circular boundary, and confirmed numerically for other shapes. It also agrees, on a physical level of rigor, with Kirchhoff's approximation. The conjecture, if true, opens new ways in numerical analysis of diffraction in the range of moderately high frequencies.","PeriodicalId":332604,"journal":{"name":"International Seminar Day on Diffraction, 2003. Proceedings.","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Symbol of the Dirichlet-to-Neumann operator in 2D diffraction problems with large wavenumber\",\"authors\":\"M. Kondratieva, S. Sadov\",\"doi\":\"10.1109/DD.2003.238180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider the Dirichlet-to-Neumann operator N in the exterior problem for the 2D Helmholtz equation outside a bounded domain with smooth boundary. Using parametrization of the boundary by normalized arclength, we treat N as a pseudodifferential operator on the unit circle. We study its discrete symbol. We put, forward a conjecture on the universal behaviour, independent of shape and curvature of the boundary, of the symbol as the wavenumber k /spl rarr/ /spl infin/. The conjecture is motivated by an explicit formula for circular boundary, and confirmed numerically for other shapes. It also agrees, on a physical level of rigor, with Kirchhoff's approximation. The conjecture, if true, opens new ways in numerical analysis of diffraction in the range of moderately high frequencies.\",\"PeriodicalId\":332604,\"journal\":{\"name\":\"International Seminar Day on Diffraction, 2003. Proceedings.\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Seminar Day on Diffraction, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DD.2003.238180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Seminar Day on Diffraction, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DD.2003.238180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

考虑光滑边界有界域外二维Helmholtz方程的外部问题中的Dirichlet-to-Neumann算子N。利用归一化弧长对边界进行参数化,将N作为单位圆上的伪微分算子。我们研究了它的离散符号。我们提出了一个关于波数为k /spl / /spl / /spl infin/的符号的不受边界形状和曲率影响的普遍行为的猜想。该猜想由圆形边界的显式公式推导而来,并在其他形状的边界上得到数值证实。在严格的物理层面上,它也符合基尔霍夫的近似。这个猜想如果成立,将为中高频范围内衍射的数值分析开辟新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symbol of the Dirichlet-to-Neumann operator in 2D diffraction problems with large wavenumber
Consider the Dirichlet-to-Neumann operator N in the exterior problem for the 2D Helmholtz equation outside a bounded domain with smooth boundary. Using parametrization of the boundary by normalized arclength, we treat N as a pseudodifferential operator on the unit circle. We study its discrete symbol. We put, forward a conjecture on the universal behaviour, independent of shape and curvature of the boundary, of the symbol as the wavenumber k /spl rarr/ /spl infin/. The conjecture is motivated by an explicit formula for circular boundary, and confirmed numerically for other shapes. It also agrees, on a physical level of rigor, with Kirchhoff's approximation. The conjecture, if true, opens new ways in numerical analysis of diffraction in the range of moderately high frequencies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信