视觉位置识别的区域关系建模

Yingying Zhu, Biao Li, Jiong Wang, Zhou Zhao
{"title":"视觉位置识别的区域关系建模","authors":"Yingying Zhu, Biao Li, Jiong Wang, Zhou Zhao","doi":"10.1145/3397271.3401176","DOIUrl":null,"url":null,"abstract":"In the process of visual perception, humans perceive not only the appearance of objects existing in a place but also their relationships (e.g. spatial layout). However, the dominant works on visual place recognition are always based on the assumption that two images depict the same place if they contain enough similar objects, while the relation information is neglected. In this paper, we propose a regional relation module which models the regional relationships and converts the convolutional feature maps to the relational feature maps. We further design a cascaded pooling method to get discriminative relation descriptors by preventing the influence of confusing relations and preserving as much useful information as possible. Extensive experiments on two place recognition benchmarks demonstrate that training with the proposed regional relation module improves the appearance descriptors and the relation descriptors are complementary to appearance descriptors. When these two kinds of descriptors are concatenated together, the resulting combined descriptors outperform the state-of-the-art methods.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Regional Relation Modeling for Visual Place Recognition\",\"authors\":\"Yingying Zhu, Biao Li, Jiong Wang, Zhou Zhao\",\"doi\":\"10.1145/3397271.3401176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the process of visual perception, humans perceive not only the appearance of objects existing in a place but also their relationships (e.g. spatial layout). However, the dominant works on visual place recognition are always based on the assumption that two images depict the same place if they contain enough similar objects, while the relation information is neglected. In this paper, we propose a regional relation module which models the regional relationships and converts the convolutional feature maps to the relational feature maps. We further design a cascaded pooling method to get discriminative relation descriptors by preventing the influence of confusing relations and preserving as much useful information as possible. Extensive experiments on two place recognition benchmarks demonstrate that training with the proposed regional relation module improves the appearance descriptors and the relation descriptors are complementary to appearance descriptors. When these two kinds of descriptors are concatenated together, the resulting combined descriptors outperform the state-of-the-art methods.\",\"PeriodicalId\":252050,\"journal\":{\"name\":\"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3397271.3401176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397271.3401176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在视觉感知的过程中,人们不仅感知到一个地方存在的物体的外观,而且还感知到它们之间的关系(如空间布局)。然而,在视觉位置识别方面的主流工作总是基于两幅图像中包含足够多的相似物体就描绘了同一个地方的假设,而忽略了关系信息。本文提出了一个区域关系模块,该模块对区域关系进行建模,并将卷积特征映射转换为关系特征映射。我们进一步设计了一种级联池化方法,通过防止混淆关系的影响并保留尽可能多的有用信息来获得判别关系描述符。在两个地点识别基准上的大量实验表明,使用所提出的区域关系模块进行训练可以改善外观描述符,并且关系描述符与外观描述符是互补的。当这两种描述符连接在一起时,所得到的组合描述符优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regional Relation Modeling for Visual Place Recognition
In the process of visual perception, humans perceive not only the appearance of objects existing in a place but also their relationships (e.g. spatial layout). However, the dominant works on visual place recognition are always based on the assumption that two images depict the same place if they contain enough similar objects, while the relation information is neglected. In this paper, we propose a regional relation module which models the regional relationships and converts the convolutional feature maps to the relational feature maps. We further design a cascaded pooling method to get discriminative relation descriptors by preventing the influence of confusing relations and preserving as much useful information as possible. Extensive experiments on two place recognition benchmarks demonstrate that training with the proposed regional relation module improves the appearance descriptors and the relation descriptors are complementary to appearance descriptors. When these two kinds of descriptors are concatenated together, the resulting combined descriptors outperform the state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信