{"title":"对数空间中的对称数据和约束满足问题","authors":"László Egri, B. Larose, Pascal Tesson","doi":"10.1109/LICS.2007.47","DOIUrl":null,"url":null,"abstract":"We introduce symmetric Datalog, a syntactic restriction of linear Datalog and show that its expressive power is exactly that of restricted symmetric Krom monotone SNP. The deep result of Reingold [17] on the complexity of undirected connectivity suffices to show that symmetric Datalog queries can be evaluated in logarithmic space. We show that for a number of constraint languages Gamma, the complement of the constraint satisfaction problem CSP(Gamma) can be expressed in symmetric Datalog. In particular, we show that if CSP(Gamma) is first-order definable and Lambda is a finite subset of the relational clone generated by Gamma then notCSP(Lambda) is definable in symmetric Datalog. Over the two-element domain and under standard complexity-theoretic assumptions, expressibility of notCSP(Gamma) in symmetric Datalog corresponds exactly to the class of CSPs computable in logarithmic space. Finally, we describe a fairly general subclass of implicational (or 0/1/all) constraints for which the complement of the corresponding CSP is also definable in symmetric Datalog. Our results provide preliminary evidence that symmetric Datalog may be a unifying explanation for families of CSPs lying in L.","PeriodicalId":137827,"journal":{"name":"22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Symmetric Datalog and Constraint Satisfaction Problems in Logspace\",\"authors\":\"László Egri, B. Larose, Pascal Tesson\",\"doi\":\"10.1109/LICS.2007.47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce symmetric Datalog, a syntactic restriction of linear Datalog and show that its expressive power is exactly that of restricted symmetric Krom monotone SNP. The deep result of Reingold [17] on the complexity of undirected connectivity suffices to show that symmetric Datalog queries can be evaluated in logarithmic space. We show that for a number of constraint languages Gamma, the complement of the constraint satisfaction problem CSP(Gamma) can be expressed in symmetric Datalog. In particular, we show that if CSP(Gamma) is first-order definable and Lambda is a finite subset of the relational clone generated by Gamma then notCSP(Lambda) is definable in symmetric Datalog. Over the two-element domain and under standard complexity-theoretic assumptions, expressibility of notCSP(Gamma) in symmetric Datalog corresponds exactly to the class of CSPs computable in logarithmic space. Finally, we describe a fairly general subclass of implicational (or 0/1/all) constraints for which the complement of the corresponding CSP is also definable in symmetric Datalog. Our results provide preliminary evidence that symmetric Datalog may be a unifying explanation for families of CSPs lying in L.\",\"PeriodicalId\":137827,\"journal\":{\"name\":\"22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.2007.47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2007.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Symmetric Datalog and Constraint Satisfaction Problems in Logspace
We introduce symmetric Datalog, a syntactic restriction of linear Datalog and show that its expressive power is exactly that of restricted symmetric Krom monotone SNP. The deep result of Reingold [17] on the complexity of undirected connectivity suffices to show that symmetric Datalog queries can be evaluated in logarithmic space. We show that for a number of constraint languages Gamma, the complement of the constraint satisfaction problem CSP(Gamma) can be expressed in symmetric Datalog. In particular, we show that if CSP(Gamma) is first-order definable and Lambda is a finite subset of the relational clone generated by Gamma then notCSP(Lambda) is definable in symmetric Datalog. Over the two-element domain and under standard complexity-theoretic assumptions, expressibility of notCSP(Gamma) in symmetric Datalog corresponds exactly to the class of CSPs computable in logarithmic space. Finally, we describe a fairly general subclass of implicational (or 0/1/all) constraints for which the complement of the corresponding CSP is also definable in symmetric Datalog. Our results provide preliminary evidence that symmetric Datalog may be a unifying explanation for families of CSPs lying in L.