对数空间中的对称数据和约束满足问题

László Egri, B. Larose, Pascal Tesson
{"title":"对数空间中的对称数据和约束满足问题","authors":"László Egri, B. Larose, Pascal Tesson","doi":"10.1109/LICS.2007.47","DOIUrl":null,"url":null,"abstract":"We introduce symmetric Datalog, a syntactic restriction of linear Datalog and show that its expressive power is exactly that of restricted symmetric Krom monotone SNP. The deep result of Reingold [17] on the complexity of undirected connectivity suffices to show that symmetric Datalog queries can be evaluated in logarithmic space. We show that for a number of constraint languages Gamma, the complement of the constraint satisfaction problem CSP(Gamma) can be expressed in symmetric Datalog. In particular, we show that if CSP(Gamma) is first-order definable and Lambda is a finite subset of the relational clone generated by Gamma then notCSP(Lambda) is definable in symmetric Datalog. Over the two-element domain and under standard complexity-theoretic assumptions, expressibility of notCSP(Gamma) in symmetric Datalog corresponds exactly to the class of CSPs computable in logarithmic space. Finally, we describe a fairly general subclass of implicational (or 0/1/all) constraints for which the complement of the corresponding CSP is also definable in symmetric Datalog. Our results provide preliminary evidence that symmetric Datalog may be a unifying explanation for families of CSPs lying in L.","PeriodicalId":137827,"journal":{"name":"22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Symmetric Datalog and Constraint Satisfaction Problems in Logspace\",\"authors\":\"László Egri, B. Larose, Pascal Tesson\",\"doi\":\"10.1109/LICS.2007.47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce symmetric Datalog, a syntactic restriction of linear Datalog and show that its expressive power is exactly that of restricted symmetric Krom monotone SNP. The deep result of Reingold [17] on the complexity of undirected connectivity suffices to show that symmetric Datalog queries can be evaluated in logarithmic space. We show that for a number of constraint languages Gamma, the complement of the constraint satisfaction problem CSP(Gamma) can be expressed in symmetric Datalog. In particular, we show that if CSP(Gamma) is first-order definable and Lambda is a finite subset of the relational clone generated by Gamma then notCSP(Lambda) is definable in symmetric Datalog. Over the two-element domain and under standard complexity-theoretic assumptions, expressibility of notCSP(Gamma) in symmetric Datalog corresponds exactly to the class of CSPs computable in logarithmic space. Finally, we describe a fairly general subclass of implicational (or 0/1/all) constraints for which the complement of the corresponding CSP is also definable in symmetric Datalog. Our results provide preliminary evidence that symmetric Datalog may be a unifying explanation for families of CSPs lying in L.\",\"PeriodicalId\":137827,\"journal\":{\"name\":\"22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.2007.47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2007.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

我们引入了线性数据表的一种语法限制——对称数据表,并证明了它的表达能力与限制对称Krom单调SNP的表达能力完全相同。Reingold[17]关于无向连接复杂性的深度结果足以表明,对称Datalog查询可以在对数空间中求值。我们证明了对于许多约束语言,约束满足问题CSP(Gamma)的补可以用对称Datalog表示。特别地,我们证明了如果CSP(Gamma)是一阶可定义的并且Lambda是由Gamma生成的关系克隆的有限子集,那么notCSP(Lambda)在对称Datalog中是可定义的。在二元域上,在标准的复杂性理论假设下,对称Datalog上的notCSP(Gamma)的可表达性完全对应于对数空间中可计算的csp类。最后,我们描述了一个相当一般的隐含(或0/1/all)约束子类,其对应的CSP的补在对称数据中也是可定义的。我们的结果提供了初步的证据,对称数据可能是一个统一的解释家族的csp躺在L。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symmetric Datalog and Constraint Satisfaction Problems in Logspace
We introduce symmetric Datalog, a syntactic restriction of linear Datalog and show that its expressive power is exactly that of restricted symmetric Krom monotone SNP. The deep result of Reingold [17] on the complexity of undirected connectivity suffices to show that symmetric Datalog queries can be evaluated in logarithmic space. We show that for a number of constraint languages Gamma, the complement of the constraint satisfaction problem CSP(Gamma) can be expressed in symmetric Datalog. In particular, we show that if CSP(Gamma) is first-order definable and Lambda is a finite subset of the relational clone generated by Gamma then notCSP(Lambda) is definable in symmetric Datalog. Over the two-element domain and under standard complexity-theoretic assumptions, expressibility of notCSP(Gamma) in symmetric Datalog corresponds exactly to the class of CSPs computable in logarithmic space. Finally, we describe a fairly general subclass of implicational (or 0/1/all) constraints for which the complement of the corresponding CSP is also definable in symmetric Datalog. Our results provide preliminary evidence that symmetric Datalog may be a unifying explanation for families of CSPs lying in L.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信