利用源端词典和目标端平行语料库进行资源有限语言的机器翻译

Takahiro Nomura, Tomoyoshi Akiba
{"title":"利用源端词典和目标端平行语料库进行资源有限语言的机器翻译","authors":"Takahiro Nomura, Tomoyoshi Akiba","doi":"10.1109/ICAICTA.2014.7005936","DOIUrl":null,"url":null,"abstract":"Statistical machine translation (SMT) requires a parallel corpus between the source and target languages. This requirement makes SMT difficult to apply to resource-limited languages that do not have any parallel corpora even to a major language, e.g., English. For such a problem, a novel pivot translation method has been proposed that does not require the source-side parallel corpus, but, uses a word dictionary instead. In this paper, we evaluate the relative translation performance of the dictionary-based method by comparing it with both the standard SMT that uses a direct parallel corpus, and the conventional pivot translation that uses two parallel corpora, by using the Europarl corpus. In addition, we also investigate the edge weighting and lattice pruning methods applied to the word lattice that was used to represent the pivot sentence candidates in the dictionary-based method.","PeriodicalId":173600,"journal":{"name":"2014 International Conference of Advanced Informatics: Concept, Theory and Application (ICAICTA)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pivot translation using source-side dictionary and target-side parallel corpus towards MT from resource-limited languages\",\"authors\":\"Takahiro Nomura, Tomoyoshi Akiba\",\"doi\":\"10.1109/ICAICTA.2014.7005936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Statistical machine translation (SMT) requires a parallel corpus between the source and target languages. This requirement makes SMT difficult to apply to resource-limited languages that do not have any parallel corpora even to a major language, e.g., English. For such a problem, a novel pivot translation method has been proposed that does not require the source-side parallel corpus, but, uses a word dictionary instead. In this paper, we evaluate the relative translation performance of the dictionary-based method by comparing it with both the standard SMT that uses a direct parallel corpus, and the conventional pivot translation that uses two parallel corpora, by using the Europarl corpus. In addition, we also investigate the edge weighting and lattice pruning methods applied to the word lattice that was used to represent the pivot sentence candidates in the dictionary-based method.\",\"PeriodicalId\":173600,\"journal\":{\"name\":\"2014 International Conference of Advanced Informatics: Concept, Theory and Application (ICAICTA)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference of Advanced Informatics: Concept, Theory and Application (ICAICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAICTA.2014.7005936\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference of Advanced Informatics: Concept, Theory and Application (ICAICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAICTA.2014.7005936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

统计机器翻译(SMT)需要在源语言和目标语言之间建立一个平行语料库。这一要求使得SMT难以应用于资源有限的语言,这些语言甚至没有与主要语言(例如英语)类似的语料库。针对这一问题,本文提出了一种新的支点翻译方法,该方法不需要源侧平行语料库,而是使用词字典。在本文中,我们通过将基于词典的方法与使用直接平行语料库的标准SMT和使用两个平行语料库的传统枢轴翻译(使用Europarl语料库)进行比较,评估了基于词典的方法的相对翻译性能。此外,我们还研究了在基于字典的方法中用于表示中心句子候选词的词格的边缘加权和格剪枝方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pivot translation using source-side dictionary and target-side parallel corpus towards MT from resource-limited languages
Statistical machine translation (SMT) requires a parallel corpus between the source and target languages. This requirement makes SMT difficult to apply to resource-limited languages that do not have any parallel corpora even to a major language, e.g., English. For such a problem, a novel pivot translation method has been proposed that does not require the source-side parallel corpus, but, uses a word dictionary instead. In this paper, we evaluate the relative translation performance of the dictionary-based method by comparing it with both the standard SMT that uses a direct parallel corpus, and the conventional pivot translation that uses two parallel corpora, by using the Europarl corpus. In addition, we also investigate the edge weighting and lattice pruning methods applied to the word lattice that was used to represent the pivot sentence candidates in the dictionary-based method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信