生物传感器应用的DNA折纸

Julia Hann, A. Morschhauser, Andreas Heerwig, J. Erben, D. Reuter, Valery Pavlov, M. L. de la Chapelle, M. Mertig, T. Otto
{"title":"生物传感器应用的DNA折纸","authors":"Julia Hann, A. Morschhauser, Andreas Heerwig, J. Erben, D. Reuter, Valery Pavlov, M. L. de la Chapelle, M. Mertig, T. Otto","doi":"10.1109/SSI52265.2021.9467014","DOIUrl":null,"url":null,"abstract":"Novel biosensors are incorporating aspects of nanotechnologies, such as the use of functional nanoparticles, in order to increase performance. For the integration of leading edge sensor principles based on nanoparticles, often the precise arrangement of nanostructures is an essential technology. One approach that has been pursued with great success is the template based DNA origami method [1, 2]. The DNA origami can serve as an individual inter-und intramolecular programmable nano-breadboard with a binding point resolution of ~ 5 nm. Our novel, innovative approach uses the DNA origami template to integrate a biological recognition element (DNA aptamer/antibody) centrically in a nanoparticle array to enable an optical detection by surface-enhanced Raman spectroscopy. For high sensor sensitivity despite complex probes, a sufficient signal accumulation is necessary, done by a selective surface immobilization of the biosensor platform. In this way, a high structure density could be realized without overlapping or agglomeration, which would lead to functional damage of the sensor. We introduce a topography supported thin-film system for the selective surface immobilization of the DNA origami and validate them by a parameter variation of a tablet DNA origami structure, which will be the later template of the biosensor platform.","PeriodicalId":382081,"journal":{"name":"2021 Smart Systems Integration (SSI)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DNA origami for biosensor applications\",\"authors\":\"Julia Hann, A. Morschhauser, Andreas Heerwig, J. Erben, D. Reuter, Valery Pavlov, M. L. de la Chapelle, M. Mertig, T. Otto\",\"doi\":\"10.1109/SSI52265.2021.9467014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Novel biosensors are incorporating aspects of nanotechnologies, such as the use of functional nanoparticles, in order to increase performance. For the integration of leading edge sensor principles based on nanoparticles, often the precise arrangement of nanostructures is an essential technology. One approach that has been pursued with great success is the template based DNA origami method [1, 2]. The DNA origami can serve as an individual inter-und intramolecular programmable nano-breadboard with a binding point resolution of ~ 5 nm. Our novel, innovative approach uses the DNA origami template to integrate a biological recognition element (DNA aptamer/antibody) centrically in a nanoparticle array to enable an optical detection by surface-enhanced Raman spectroscopy. For high sensor sensitivity despite complex probes, a sufficient signal accumulation is necessary, done by a selective surface immobilization of the biosensor platform. In this way, a high structure density could be realized without overlapping or agglomeration, which would lead to functional damage of the sensor. We introduce a topography supported thin-film system for the selective surface immobilization of the DNA origami and validate them by a parameter variation of a tablet DNA origami structure, which will be the later template of the biosensor platform.\",\"PeriodicalId\":382081,\"journal\":{\"name\":\"2021 Smart Systems Integration (SSI)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Smart Systems Integration (SSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSI52265.2021.9467014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Smart Systems Integration (SSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSI52265.2021.9467014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

新型生物传感器正在结合纳米技术的各个方面,例如使用功能性纳米颗粒,以提高性能。为了集成基于纳米粒子的前沿传感器原理,纳米结构的精确排列往往是必不可少的技术。一种已经取得巨大成功的方法是基于模板的DNA折纸方法[1,2]。DNA折纸可以作为一个单独的分子间可编程纳米面包板,结合点分辨率为~ 5nm。我们新颖的创新方法使用DNA折纸模板将生物识别元件(DNA适体/抗体)以纳米颗粒阵列为中心集成,从而通过表面增强拉曼光谱进行光学检测。对于高传感器灵敏度,尽管复杂的探针,足够的信号积累是必要的,通过生物传感器平台的选择性表面固定化来完成。这样可以实现高的结构密度,而不会产生重叠和团聚,从而导致传感器的功能损坏。我们介绍了一种地形支持的薄膜系统,用于DNA折纸的选择性表面固定,并通过片状DNA折纸结构的参数变化来验证它们,这将成为生物传感器平台的后期模板。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DNA origami for biosensor applications
Novel biosensors are incorporating aspects of nanotechnologies, such as the use of functional nanoparticles, in order to increase performance. For the integration of leading edge sensor principles based on nanoparticles, often the precise arrangement of nanostructures is an essential technology. One approach that has been pursued with great success is the template based DNA origami method [1, 2]. The DNA origami can serve as an individual inter-und intramolecular programmable nano-breadboard with a binding point resolution of ~ 5 nm. Our novel, innovative approach uses the DNA origami template to integrate a biological recognition element (DNA aptamer/antibody) centrically in a nanoparticle array to enable an optical detection by surface-enhanced Raman spectroscopy. For high sensor sensitivity despite complex probes, a sufficient signal accumulation is necessary, done by a selective surface immobilization of the biosensor platform. In this way, a high structure density could be realized without overlapping or agglomeration, which would lead to functional damage of the sensor. We introduce a topography supported thin-film system for the selective surface immobilization of the DNA origami and validate them by a parameter variation of a tablet DNA origami structure, which will be the later template of the biosensor platform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信