基于收缩估计的混合分类器多类运动图像公共空间模式分类

Mohammadreza Edalati Sharbaf, A. Fallah, S. Rashidi
{"title":"基于收缩估计的混合分类器多类运动图像公共空间模式分类","authors":"Mohammadreza Edalati Sharbaf, A. Fallah, S. Rashidi","doi":"10.1109/PRIA.2017.7983059","DOIUrl":null,"url":null,"abstract":"Motor imagery BCI is a system that is very useful to help people with disabilities who can't move their limbs. These systems use brain activity patterns that are made from motor imagery without actual movement. In this paper, we proposed enhanced One Versus One (OVO) structure to classify EEG-based multi-class motor imagery signals. Also, shrinkage estimator based Common Spatial Pattern (CSP) is used to overcome disadvantages of conventional CSP. Shrinkage estimator is a procedure to estimate covariance matrix that regularizes CSP versus overfitting. The results of four-class classification of BCI competition IV dataset 2a, show that the performance is improved to 0.61 kappa score.","PeriodicalId":336066,"journal":{"name":"2017 3rd International Conference on Pattern Recognition and Image Analysis (IPRIA)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Shrinkage estimator based common spatial pattern for multi-class motor imagery classification by hybrid classifier\",\"authors\":\"Mohammadreza Edalati Sharbaf, A. Fallah, S. Rashidi\",\"doi\":\"10.1109/PRIA.2017.7983059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motor imagery BCI is a system that is very useful to help people with disabilities who can't move their limbs. These systems use brain activity patterns that are made from motor imagery without actual movement. In this paper, we proposed enhanced One Versus One (OVO) structure to classify EEG-based multi-class motor imagery signals. Also, shrinkage estimator based Common Spatial Pattern (CSP) is used to overcome disadvantages of conventional CSP. Shrinkage estimator is a procedure to estimate covariance matrix that regularizes CSP versus overfitting. The results of four-class classification of BCI competition IV dataset 2a, show that the performance is improved to 0.61 kappa score.\",\"PeriodicalId\":336066,\"journal\":{\"name\":\"2017 3rd International Conference on Pattern Recognition and Image Analysis (IPRIA)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 3rd International Conference on Pattern Recognition and Image Analysis (IPRIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRIA.2017.7983059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 3rd International Conference on Pattern Recognition and Image Analysis (IPRIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRIA.2017.7983059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

运动想象脑机接口是一个非常有用的系统,可以帮助那些肢体不能动的残疾人。这些系统使用的大脑活动模式是由没有实际运动的运动图像构成的。本文提出了一种增强的One Versus One (OVO)结构对基于脑电图的多类运动图像信号进行分类。同时,采用基于收缩估计的公共空间模式(CSP)来克服常规CSP的缺点。收缩估计是一种估计协方差矩阵的程序,它使CSP与过拟合正则化。BCI大赛IV数据集2a的四类分类结果表明,性能提高到0.61 kappa分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shrinkage estimator based common spatial pattern for multi-class motor imagery classification by hybrid classifier
Motor imagery BCI is a system that is very useful to help people with disabilities who can't move their limbs. These systems use brain activity patterns that are made from motor imagery without actual movement. In this paper, we proposed enhanced One Versus One (OVO) structure to classify EEG-based multi-class motor imagery signals. Also, shrinkage estimator based Common Spatial Pattern (CSP) is used to overcome disadvantages of conventional CSP. Shrinkage estimator is a procedure to estimate covariance matrix that regularizes CSP versus overfitting. The results of four-class classification of BCI competition IV dataset 2a, show that the performance is improved to 0.61 kappa score.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信