一个普适的hochschild - kostant - rosenberg定理

Tasos Moulinos, Marco Robalo, B. Toën
{"title":"一个普适的hochschild - kostant - rosenberg定理","authors":"Tasos Moulinos, Marco Robalo, B. Toën","doi":"10.2140/gt.2022.26.777","DOIUrl":null,"url":null,"abstract":"In this work we study the failure of the HKR theorem over rings of positive and mixed characteristic. For this we construct a filtered circle interpolating between the usual topological circle and a formal version of it. By mapping to schemes we produce this way a natural interpolation, realized in practice by the existence of a natural filtration, from Hochschild and cyclic homology to derived de Rham cohomology. The construction our filtered circle is based upon the theory of affine stacks and affinization introduced by the third author, together with some facts about schemes of Witt vectors.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A universal Hochschild–Kostant–Rosenberg\\ntheorem\",\"authors\":\"Tasos Moulinos, Marco Robalo, B. Toën\",\"doi\":\"10.2140/gt.2022.26.777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we study the failure of the HKR theorem over rings of positive and mixed characteristic. For this we construct a filtered circle interpolating between the usual topological circle and a formal version of it. By mapping to schemes we produce this way a natural interpolation, realized in practice by the existence of a natural filtration, from Hochschild and cyclic homology to derived de Rham cohomology. The construction our filtered circle is based upon the theory of affine stacks and affinization introduced by the third author, together with some facts about schemes of Witt vectors.\",\"PeriodicalId\":254292,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2022.26.777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2022.26.777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
A universal Hochschild–Kostant–Rosenberg theorem
In this work we study the failure of the HKR theorem over rings of positive and mixed characteristic. For this we construct a filtered circle interpolating between the usual topological circle and a formal version of it. By mapping to schemes we produce this way a natural interpolation, realized in practice by the existence of a natural filtration, from Hochschild and cyclic homology to derived de Rham cohomology. The construction our filtered circle is based upon the theory of affine stacks and affinization introduced by the third author, together with some facts about schemes of Witt vectors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信