先试后买:基于云的机器学习数据市场上的隐私保护数据评估

Qiyang Song, Jiahao Cao, Kun Sun, Qi Li, Ke Xu
{"title":"先试后买:基于云的机器学习数据市场上的隐私保护数据评估","authors":"Qiyang Song, Jiahao Cao, Kun Sun, Qi Li, Ke Xu","doi":"10.1145/3485832.3485921","DOIUrl":null,"url":null,"abstract":"A cloud-based data marketplace provides a service to match data shoppers with appropriate data sellers, so that data shoppers can augment their internal data sets with external data to improve their machine learning (ML) models. Since data may contain diverse values, it is critical for a shopper to evaluate the most valuable data before making the final trade. However, evaluating ML data typically requires the cloud to access a shopper’s ML model and sellers’ data, which are both sensitive. None of the existing cloud-based data marketplaces enable ML data evaluation while preserving both model privacy and data privacy. In this paper, we develop a privacy-preserving ML data evaluation framework on a cloud-based data marketplace to protect shoppers’ ML models and sellers’ data. First, we provide a privacy-preserving framework that allows shoppers and sellers to encrypt their models and data, respectively, while preserving data functionality and model functionality in the cloud. We then develop a privacy-preserving data selection protocol that enables the cloud to help shoppers select the most valuable ML data. Also, we develop a privacy-preserving data validation protocol that allows shoppers to further check the quality of the selected data. Compared to random data selection, the experimental results show that our solution can reduce 60% prediction errors.","PeriodicalId":175869,"journal":{"name":"Annual Computer Security Applications Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Try before You Buy: Privacy-preserving Data Evaluation on Cloud-based Machine Learning Data Marketplace\",\"authors\":\"Qiyang Song, Jiahao Cao, Kun Sun, Qi Li, Ke Xu\",\"doi\":\"10.1145/3485832.3485921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A cloud-based data marketplace provides a service to match data shoppers with appropriate data sellers, so that data shoppers can augment their internal data sets with external data to improve their machine learning (ML) models. Since data may contain diverse values, it is critical for a shopper to evaluate the most valuable data before making the final trade. However, evaluating ML data typically requires the cloud to access a shopper’s ML model and sellers’ data, which are both sensitive. None of the existing cloud-based data marketplaces enable ML data evaluation while preserving both model privacy and data privacy. In this paper, we develop a privacy-preserving ML data evaluation framework on a cloud-based data marketplace to protect shoppers’ ML models and sellers’ data. First, we provide a privacy-preserving framework that allows shoppers and sellers to encrypt their models and data, respectively, while preserving data functionality and model functionality in the cloud. We then develop a privacy-preserving data selection protocol that enables the cloud to help shoppers select the most valuable ML data. Also, we develop a privacy-preserving data validation protocol that allows shoppers to further check the quality of the selected data. Compared to random data selection, the experimental results show that our solution can reduce 60% prediction errors.\",\"PeriodicalId\":175869,\"journal\":{\"name\":\"Annual Computer Security Applications Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Computer Security Applications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3485832.3485921\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Computer Security Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3485832.3485921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

基于云的数据市场提供了一种服务,将数据购买者与合适的数据销售者匹配起来,这样数据购买者就可以用外部数据来增强他们的内部数据集,以改进他们的机器学习(ML)模型。由于数据可能包含不同的值,因此对于购物者来说,在进行最终交易之前评估最有价值的数据至关重要。然而,评估机器学习数据通常需要云访问购物者的机器学习模型和卖家的数据,这两者都是敏感的。现有的基于云的数据市场都不支持ML数据评估,同时保护模型隐私和数据隐私。在本文中,我们在基于云的数据市场上开发了一个保护隐私的ML数据评估框架,以保护购物者的ML模型和卖家的数据。首先,我们提供了一个隐私保护框架,允许购物者和卖家分别加密他们的模型和数据,同时在云中保留数据功能和模型功能。然后,我们开发了一个保护隐私的数据选择协议,使云能够帮助购物者选择最有价值的ML数据。此外,我们还开发了一个保护隐私的数据验证协议,允许购物者进一步检查所选数据的质量。实验结果表明,与随机数据选择相比,该方法可将预测误差降低60%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Try before You Buy: Privacy-preserving Data Evaluation on Cloud-based Machine Learning Data Marketplace
A cloud-based data marketplace provides a service to match data shoppers with appropriate data sellers, so that data shoppers can augment their internal data sets with external data to improve their machine learning (ML) models. Since data may contain diverse values, it is critical for a shopper to evaluate the most valuable data before making the final trade. However, evaluating ML data typically requires the cloud to access a shopper’s ML model and sellers’ data, which are both sensitive. None of the existing cloud-based data marketplaces enable ML data evaluation while preserving both model privacy and data privacy. In this paper, we develop a privacy-preserving ML data evaluation framework on a cloud-based data marketplace to protect shoppers’ ML models and sellers’ data. First, we provide a privacy-preserving framework that allows shoppers and sellers to encrypt their models and data, respectively, while preserving data functionality and model functionality in the cloud. We then develop a privacy-preserving data selection protocol that enables the cloud to help shoppers select the most valuable ML data. Also, we develop a privacy-preserving data validation protocol that allows shoppers to further check the quality of the selected data. Compared to random data selection, the experimental results show that our solution can reduce 60% prediction errors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信