基于稀疏自编码器的情境知识降维方法

Chuang Wang, Song Li, Wenfeng Wei, Shijie Li, Jiayi Liu
{"title":"基于稀疏自编码器的情境知识降维方法","authors":"Chuang Wang, Song Li, Wenfeng Wei, Shijie Li, Jiayi Liu","doi":"10.1145/3446132.3446151","DOIUrl":null,"url":null,"abstract":"Under the background of great changes in military science and technology theory, in order to solve the problem of massive high-dimensional situation knowledge processing in the process of battlefield situation assessment.The current dimensionality reduction methods often ignore the influence of algorithm complexity and model representation ability on dimensionality reduction when solving the massive dimensionality reduction problem of high-dimensional situation knowledge. In order to balance this problem, this paper proposes a situation knowledge dimension reduction method based on Sparse Autoencoder, which has a good performance in achieving dimension reduction of high-dimensional situation information and obtaining its abstract feature representation.","PeriodicalId":125388,"journal":{"name":"Proceedings of the 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A dimension reduction method of situation knowledge based on Sparse Autoencoder\",\"authors\":\"Chuang Wang, Song Li, Wenfeng Wei, Shijie Li, Jiayi Liu\",\"doi\":\"10.1145/3446132.3446151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Under the background of great changes in military science and technology theory, in order to solve the problem of massive high-dimensional situation knowledge processing in the process of battlefield situation assessment.The current dimensionality reduction methods often ignore the influence of algorithm complexity and model representation ability on dimensionality reduction when solving the massive dimensionality reduction problem of high-dimensional situation knowledge. In order to balance this problem, this paper proposes a situation knowledge dimension reduction method based on Sparse Autoencoder, which has a good performance in achieving dimension reduction of high-dimensional situation information and obtaining its abstract feature representation.\",\"PeriodicalId\":125388,\"journal\":{\"name\":\"Proceedings of the 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3446132.3446151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3446132.3446151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在军事科技理论发生巨大变化的背景下,为了解决战场态势评估过程中海量高维态势知识处理问题。当前的降维方法在解决高维情景知识的海量降维问题时,往往忽略了算法复杂度和模型表示能力对降维的影响。为了平衡这一问题,本文提出了一种基于稀疏自编码器的态势知识降维方法,该方法在实现高维态势信息降维并获得其抽象特征表示方面具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A dimension reduction method of situation knowledge based on Sparse Autoencoder
Under the background of great changes in military science and technology theory, in order to solve the problem of massive high-dimensional situation knowledge processing in the process of battlefield situation assessment.The current dimensionality reduction methods often ignore the influence of algorithm complexity and model representation ability on dimensionality reduction when solving the massive dimensionality reduction problem of high-dimensional situation knowledge. In order to balance this problem, this paper proposes a situation knowledge dimension reduction method based on Sparse Autoencoder, which has a good performance in achieving dimension reduction of high-dimensional situation information and obtaining its abstract feature representation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信