多通道神经记录的字典学习算法

T. Xiong, Yuanming Suo, J. Zhang, Siwei Liu, R. Etienne-Cummings, S. Chin, T. Tran
{"title":"多通道神经记录的字典学习算法","authors":"T. Xiong, Yuanming Suo, J. Zhang, Siwei Liu, R. Etienne-Cummings, S. Chin, T. Tran","doi":"10.1109/BioCAS.2014.6981632","DOIUrl":null,"url":null,"abstract":"Multi-channel neural recording devices are widely used for in vivo neuroscience experiments. Incurred by high signal frequency and large channel numbers, the acquisition rate could be on the order of hundred MB/s, which requires compression before wireless transmission. In this paper, we adopt the Compressed Sensing framework with a simple on-chip implementation. To improve the performance while reducing the number of measurements, we propose a multi-modal structured dictionary learning algorithm that enforces both group sparsity and joint sparsity to learn sparsifying dictionaries for all channels simultaneously. When the data is compressed 50 times, our method can achieve a gain of 4 dB and 10 percentage units over state-of-art approaches in terms of the reconstruction quality and classification accuracy, respectively.","PeriodicalId":414575,"journal":{"name":"2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A dictionary learning algorithm for multi-channel neural recordings\",\"authors\":\"T. Xiong, Yuanming Suo, J. Zhang, Siwei Liu, R. Etienne-Cummings, S. Chin, T. Tran\",\"doi\":\"10.1109/BioCAS.2014.6981632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-channel neural recording devices are widely used for in vivo neuroscience experiments. Incurred by high signal frequency and large channel numbers, the acquisition rate could be on the order of hundred MB/s, which requires compression before wireless transmission. In this paper, we adopt the Compressed Sensing framework with a simple on-chip implementation. To improve the performance while reducing the number of measurements, we propose a multi-modal structured dictionary learning algorithm that enforces both group sparsity and joint sparsity to learn sparsifying dictionaries for all channels simultaneously. When the data is compressed 50 times, our method can achieve a gain of 4 dB and 10 percentage units over state-of-art approaches in terms of the reconstruction quality and classification accuracy, respectively.\",\"PeriodicalId\":414575,\"journal\":{\"name\":\"2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BioCAS.2014.6981632\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BioCAS.2014.6981632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

多通道神经记录装置广泛应用于活体神经科学实验。由于信号频率高,通道数多,采集速率可达百MB/s量级,需要在无线传输前进行压缩。在本文中,我们采用压缩感知框架和一个简单的片上实现。为了在减少测量次数的同时提高性能,我们提出了一种多模态结构化字典学习算法,该算法同时执行组稀疏性和联合稀疏性,以同时学习所有通道的稀疏化字典。当数据被压缩50次时,我们的方法在重建质量和分类精度方面分别比目前的方法获得4 dB和10个百分点的增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A dictionary learning algorithm for multi-channel neural recordings
Multi-channel neural recording devices are widely used for in vivo neuroscience experiments. Incurred by high signal frequency and large channel numbers, the acquisition rate could be on the order of hundred MB/s, which requires compression before wireless transmission. In this paper, we adopt the Compressed Sensing framework with a simple on-chip implementation. To improve the performance while reducing the number of measurements, we propose a multi-modal structured dictionary learning algorithm that enforces both group sparsity and joint sparsity to learn sparsifying dictionaries for all channels simultaneously. When the data is compressed 50 times, our method can achieve a gain of 4 dB and 10 percentage units over state-of-art approaches in terms of the reconstruction quality and classification accuracy, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信