T. Xiong, Yuanming Suo, J. Zhang, Siwei Liu, R. Etienne-Cummings, S. Chin, T. Tran
{"title":"多通道神经记录的字典学习算法","authors":"T. Xiong, Yuanming Suo, J. Zhang, Siwei Liu, R. Etienne-Cummings, S. Chin, T. Tran","doi":"10.1109/BioCAS.2014.6981632","DOIUrl":null,"url":null,"abstract":"Multi-channel neural recording devices are widely used for in vivo neuroscience experiments. Incurred by high signal frequency and large channel numbers, the acquisition rate could be on the order of hundred MB/s, which requires compression before wireless transmission. In this paper, we adopt the Compressed Sensing framework with a simple on-chip implementation. To improve the performance while reducing the number of measurements, we propose a multi-modal structured dictionary learning algorithm that enforces both group sparsity and joint sparsity to learn sparsifying dictionaries for all channels simultaneously. When the data is compressed 50 times, our method can achieve a gain of 4 dB and 10 percentage units over state-of-art approaches in terms of the reconstruction quality and classification accuracy, respectively.","PeriodicalId":414575,"journal":{"name":"2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A dictionary learning algorithm for multi-channel neural recordings\",\"authors\":\"T. Xiong, Yuanming Suo, J. Zhang, Siwei Liu, R. Etienne-Cummings, S. Chin, T. Tran\",\"doi\":\"10.1109/BioCAS.2014.6981632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-channel neural recording devices are widely used for in vivo neuroscience experiments. Incurred by high signal frequency and large channel numbers, the acquisition rate could be on the order of hundred MB/s, which requires compression before wireless transmission. In this paper, we adopt the Compressed Sensing framework with a simple on-chip implementation. To improve the performance while reducing the number of measurements, we propose a multi-modal structured dictionary learning algorithm that enforces both group sparsity and joint sparsity to learn sparsifying dictionaries for all channels simultaneously. When the data is compressed 50 times, our method can achieve a gain of 4 dB and 10 percentage units over state-of-art approaches in terms of the reconstruction quality and classification accuracy, respectively.\",\"PeriodicalId\":414575,\"journal\":{\"name\":\"2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BioCAS.2014.6981632\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BioCAS.2014.6981632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A dictionary learning algorithm for multi-channel neural recordings
Multi-channel neural recording devices are widely used for in vivo neuroscience experiments. Incurred by high signal frequency and large channel numbers, the acquisition rate could be on the order of hundred MB/s, which requires compression before wireless transmission. In this paper, we adopt the Compressed Sensing framework with a simple on-chip implementation. To improve the performance while reducing the number of measurements, we propose a multi-modal structured dictionary learning algorithm that enforces both group sparsity and joint sparsity to learn sparsifying dictionaries for all channels simultaneously. When the data is compressed 50 times, our method can achieve a gain of 4 dB and 10 percentage units over state-of-art approaches in terms of the reconstruction quality and classification accuracy, respectively.