基于面向梯度特征直方图的动态时间规整和手部形状距离的手语识别

Pat Jangyodsuk, C. Conly, V. Athitsos
{"title":"基于面向梯度特征直方图的动态时间规整和手部形状距离的手语识别","authors":"Pat Jangyodsuk, C. Conly, V. Athitsos","doi":"10.1145/2674396.2674421","DOIUrl":null,"url":null,"abstract":"Recognizing sign language is a very challenging task in computer vision. One of the more popular approaches, Dynamic Time Warping (DTW), utilizes hand trajectory information to compare a query sign with those in a database of examples. In this work, we conducted an American Sign Language (ASL) recognition experiment on Kinect sign data using DTW for sign trajectory similarity and Histogram of Oriented Gradient (HoG) [5] for hand shape representation. Our results show an improvement over the original work of [14], achieving an 82% accuracy in ranking signs in the 10 matches. In addition to our method that improves sign recognition accuracy, we propose a simple RGB-D alignment tool that can help roughly approximate alignment parameters between the color (RGB) and depth frames.","PeriodicalId":192421,"journal":{"name":"Proceedings of the 7th International Conference on PErvasive Technologies Related to Assistive Environments","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"Sign language recognition using dynamic time warping and hand shape distance based on histogram of oriented gradient features\",\"authors\":\"Pat Jangyodsuk, C. Conly, V. Athitsos\",\"doi\":\"10.1145/2674396.2674421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recognizing sign language is a very challenging task in computer vision. One of the more popular approaches, Dynamic Time Warping (DTW), utilizes hand trajectory information to compare a query sign with those in a database of examples. In this work, we conducted an American Sign Language (ASL) recognition experiment on Kinect sign data using DTW for sign trajectory similarity and Histogram of Oriented Gradient (HoG) [5] for hand shape representation. Our results show an improvement over the original work of [14], achieving an 82% accuracy in ranking signs in the 10 matches. In addition to our method that improves sign recognition accuracy, we propose a simple RGB-D alignment tool that can help roughly approximate alignment parameters between the color (RGB) and depth frames.\",\"PeriodicalId\":192421,\"journal\":{\"name\":\"Proceedings of the 7th International Conference on PErvasive Technologies Related to Assistive Environments\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th International Conference on PErvasive Technologies Related to Assistive Environments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2674396.2674421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Conference on PErvasive Technologies Related to Assistive Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2674396.2674421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

摘要

在计算机视觉中,识别手语是一项非常具有挑战性的任务。其中一种比较流行的方法是动态时间扭曲(DTW),它利用手部轨迹信息将查询符号与样本数据库中的查询符号进行比较。在这项工作中,我们对Kinect手势数据进行了美国手语(ASL)识别实验,使用DTW进行手势轨迹相似性,使用直方图定向梯度(HoG)[5]进行手部形状表示。我们的结果比[14]的原始工作有了改进,在10场比赛中排名符号的准确率达到了82%。除了我们的方法提高了符号识别的准确性外,我们还提出了一个简单的RGB- d对齐工具,可以帮助大致近似颜色(RGB)和深度帧之间的对齐参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sign language recognition using dynamic time warping and hand shape distance based on histogram of oriented gradient features
Recognizing sign language is a very challenging task in computer vision. One of the more popular approaches, Dynamic Time Warping (DTW), utilizes hand trajectory information to compare a query sign with those in a database of examples. In this work, we conducted an American Sign Language (ASL) recognition experiment on Kinect sign data using DTW for sign trajectory similarity and Histogram of Oriented Gradient (HoG) [5] for hand shape representation. Our results show an improvement over the original work of [14], achieving an 82% accuracy in ranking signs in the 10 matches. In addition to our method that improves sign recognition accuracy, we propose a simple RGB-D alignment tool that can help roughly approximate alignment parameters between the color (RGB) and depth frames.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信