{"title":"基于面向梯度特征直方图的动态时间规整和手部形状距离的手语识别","authors":"Pat Jangyodsuk, C. Conly, V. Athitsos","doi":"10.1145/2674396.2674421","DOIUrl":null,"url":null,"abstract":"Recognizing sign language is a very challenging task in computer vision. One of the more popular approaches, Dynamic Time Warping (DTW), utilizes hand trajectory information to compare a query sign with those in a database of examples. In this work, we conducted an American Sign Language (ASL) recognition experiment on Kinect sign data using DTW for sign trajectory similarity and Histogram of Oriented Gradient (HoG) [5] for hand shape representation. Our results show an improvement over the original work of [14], achieving an 82% accuracy in ranking signs in the 10 matches. In addition to our method that improves sign recognition accuracy, we propose a simple RGB-D alignment tool that can help roughly approximate alignment parameters between the color (RGB) and depth frames.","PeriodicalId":192421,"journal":{"name":"Proceedings of the 7th International Conference on PErvasive Technologies Related to Assistive Environments","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"Sign language recognition using dynamic time warping and hand shape distance based on histogram of oriented gradient features\",\"authors\":\"Pat Jangyodsuk, C. Conly, V. Athitsos\",\"doi\":\"10.1145/2674396.2674421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recognizing sign language is a very challenging task in computer vision. One of the more popular approaches, Dynamic Time Warping (DTW), utilizes hand trajectory information to compare a query sign with those in a database of examples. In this work, we conducted an American Sign Language (ASL) recognition experiment on Kinect sign data using DTW for sign trajectory similarity and Histogram of Oriented Gradient (HoG) [5] for hand shape representation. Our results show an improvement over the original work of [14], achieving an 82% accuracy in ranking signs in the 10 matches. In addition to our method that improves sign recognition accuracy, we propose a simple RGB-D alignment tool that can help roughly approximate alignment parameters between the color (RGB) and depth frames.\",\"PeriodicalId\":192421,\"journal\":{\"name\":\"Proceedings of the 7th International Conference on PErvasive Technologies Related to Assistive Environments\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th International Conference on PErvasive Technologies Related to Assistive Environments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2674396.2674421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Conference on PErvasive Technologies Related to Assistive Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2674396.2674421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sign language recognition using dynamic time warping and hand shape distance based on histogram of oriented gradient features
Recognizing sign language is a very challenging task in computer vision. One of the more popular approaches, Dynamic Time Warping (DTW), utilizes hand trajectory information to compare a query sign with those in a database of examples. In this work, we conducted an American Sign Language (ASL) recognition experiment on Kinect sign data using DTW for sign trajectory similarity and Histogram of Oriented Gradient (HoG) [5] for hand shape representation. Our results show an improvement over the original work of [14], achieving an 82% accuracy in ranking signs in the 10 matches. In addition to our method that improves sign recognition accuracy, we propose a simple RGB-D alignment tool that can help roughly approximate alignment parameters between the color (RGB) and depth frames.