多项式插值的拉格朗日逼近与厄米特逼近的比较研究

Shashwati Ray, Vandana Chouhan
{"title":"多项式插值的拉格朗日逼近与厄米特逼近的比较研究","authors":"Shashwati Ray, Vandana Chouhan","doi":"10.1109/ICCCIS51004.2021.9397190","DOIUrl":null,"url":null,"abstract":"Interpolation means replacing complicated function by simple function which matches at distinct nodes in given interval. Best approximation depends on choice of calculating method, number of nodes and type of nodes. In present work comparative study is done between Lagrange and Hermite interpolation with equally spaced and Chebyshev nodes, by approximating four functions of different property. Experiments have shown that the Hermite polynomial with Chebyshev node distribution gives result of higher accuracy than those obtained using equally spaced nodes.","PeriodicalId":316752,"journal":{"name":"2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative study of approximation using Lagrange and Hermite form of polynomial interpolations\",\"authors\":\"Shashwati Ray, Vandana Chouhan\",\"doi\":\"10.1109/ICCCIS51004.2021.9397190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interpolation means replacing complicated function by simple function which matches at distinct nodes in given interval. Best approximation depends on choice of calculating method, number of nodes and type of nodes. In present work comparative study is done between Lagrange and Hermite interpolation with equally spaced and Chebyshev nodes, by approximating four functions of different property. Experiments have shown that the Hermite polynomial with Chebyshev node distribution gives result of higher accuracy than those obtained using equally spaced nodes.\",\"PeriodicalId\":316752,\"journal\":{\"name\":\"2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCIS51004.2021.9397190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCIS51004.2021.9397190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

插值是指用在给定区间内不同节点处匹配的简单函数代替复杂函数。最佳逼近取决于计算方法的选择、节点的数量和节点的类型。本文通过近似四种不同性质的函数,比较研究了拉格朗日和埃尔米特等间距和切比雪夫节点插值。实验表明,采用切比雪夫节点分布的Hermite多项式比采用等间距节点分布的Hermite多项式具有更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative study of approximation using Lagrange and Hermite form of polynomial interpolations
Interpolation means replacing complicated function by simple function which matches at distinct nodes in given interval. Best approximation depends on choice of calculating method, number of nodes and type of nodes. In present work comparative study is done between Lagrange and Hermite interpolation with equally spaced and Chebyshev nodes, by approximating four functions of different property. Experiments have shown that the Hermite polynomial with Chebyshev node distribution gives result of higher accuracy than those obtained using equally spaced nodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信