基于支持向量机的FoF2可预测性研究

Chun Chen, P. Ban, Shuji Sun
{"title":"基于支持向量机的FoF2可预测性研究","authors":"Chun Chen, P. Ban, Shuji Sun","doi":"10.1109/ISAPE.2018.8634038","DOIUrl":null,"url":null,"abstract":"This paper proposes a method for forecasting the ionospheric critical frequency, foF2, one day in advance using the support vector machine approach. The output is the predicted foF2 one day ahead. The network is trained to use the ionospheric sounding data at Guangzhou station at high and low solar activity. The performance of the SVM model was verified with observed data. It is shown that the predicted foF2 has agreement with the observed foF2.","PeriodicalId":297368,"journal":{"name":"2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Predictability of FoF2 using Support Vector Machine\",\"authors\":\"Chun Chen, P. Ban, Shuji Sun\",\"doi\":\"10.1109/ISAPE.2018.8634038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a method for forecasting the ionospheric critical frequency, foF2, one day in advance using the support vector machine approach. The output is the predicted foF2 one day ahead. The network is trained to use the ionospheric sounding data at Guangzhou station at high and low solar activity. The performance of the SVM model was verified with observed data. It is shown that the predicted foF2 has agreement with the observed foF2.\",\"PeriodicalId\":297368,\"journal\":{\"name\":\"2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAPE.2018.8634038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAPE.2018.8634038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种利用支持向量机方法提前一天预测电离层临界频率foF2的方法。输出是提前一天预测的foF2。利用广州站在太阳活动高峰和低峰时的电离层探测数据对网络进行了训练。用实测数据验证了SVM模型的性能。结果表明,预测的foF2与实测的foF2基本一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Predictability of FoF2 using Support Vector Machine
This paper proposes a method for forecasting the ionospheric critical frequency, foF2, one day in advance using the support vector machine approach. The output is the predicted foF2 one day ahead. The network is trained to use the ionospheric sounding data at Guangzhou station at high and low solar activity. The performance of the SVM model was verified with observed data. It is shown that the predicted foF2 has agreement with the observed foF2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信