Utsha Das, Hasan Sanjary Islam, Kakon Paul Avi, Ajmayeen Adil, Dipannyta Nandi
{"title":"农作物产量预测数据挖掘技术的比较分析","authors":"Utsha Das, Hasan Sanjary Islam, Kakon Paul Avi, Ajmayeen Adil, Dipannyta Nandi","doi":"10.5815/ijitcs.2023.04.03","DOIUrl":null,"url":null,"abstract":"Predicting crop yields is one of the more difficult tasks in the agriculture sector. A fascinating area of research to estimate agricultural productivity has emerged from recent advancements in information technology for agriculture. Crop yield prediction is a technique for estimating crop production based on a variety of factors, including weather conditions and parameters such as temperature, rainfall, fertilizer, and pesticide use. In the world of agriculture, Data mining techniques are extremely popular. In order to predict the crop production for the following year, data mining techniques are employed and evaluated in the agricultural sector. In this paper, we carried out the comparison between Naive Bayes, K-nearest neighbor, Decision Tree, Random Forest, and K-Means clustering algorithms to predict crop yield in order to determine which method is most effective at doing so. The results show which algorithm is better suitable for this particular purpose by comparing these data mining algorithms for agricultural crop production and determining which algorithm is more successful for this outcome.","PeriodicalId":130361,"journal":{"name":"International Journal of Information Technology and Computer Science","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Analysis of Data Mining Techniques for Predicting the Yield of Agricultural Crops\",\"authors\":\"Utsha Das, Hasan Sanjary Islam, Kakon Paul Avi, Ajmayeen Adil, Dipannyta Nandi\",\"doi\":\"10.5815/ijitcs.2023.04.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting crop yields is one of the more difficult tasks in the agriculture sector. A fascinating area of research to estimate agricultural productivity has emerged from recent advancements in information technology for agriculture. Crop yield prediction is a technique for estimating crop production based on a variety of factors, including weather conditions and parameters such as temperature, rainfall, fertilizer, and pesticide use. In the world of agriculture, Data mining techniques are extremely popular. In order to predict the crop production for the following year, data mining techniques are employed and evaluated in the agricultural sector. In this paper, we carried out the comparison between Naive Bayes, K-nearest neighbor, Decision Tree, Random Forest, and K-Means clustering algorithms to predict crop yield in order to determine which method is most effective at doing so. The results show which algorithm is better suitable for this particular purpose by comparing these data mining algorithms for agricultural crop production and determining which algorithm is more successful for this outcome.\",\"PeriodicalId\":130361,\"journal\":{\"name\":\"International Journal of Information Technology and Computer Science\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Technology and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5815/ijitcs.2023.04.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technology and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5815/ijitcs.2023.04.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparative Analysis of Data Mining Techniques for Predicting the Yield of Agricultural Crops
Predicting crop yields is one of the more difficult tasks in the agriculture sector. A fascinating area of research to estimate agricultural productivity has emerged from recent advancements in information technology for agriculture. Crop yield prediction is a technique for estimating crop production based on a variety of factors, including weather conditions and parameters such as temperature, rainfall, fertilizer, and pesticide use. In the world of agriculture, Data mining techniques are extremely popular. In order to predict the crop production for the following year, data mining techniques are employed and evaluated in the agricultural sector. In this paper, we carried out the comparison between Naive Bayes, K-nearest neighbor, Decision Tree, Random Forest, and K-Means clustering algorithms to predict crop yield in order to determine which method is most effective at doing so. The results show which algorithm is better suitable for this particular purpose by comparing these data mining algorithms for agricultural crop production and determining which algorithm is more successful for this outcome.