未掺杂和n掺杂石墨烯光子器件的不同响应

Wenrong Wang, Tie Li, Yuxiu Zhou, C. Liang, Yuelin Wang
{"title":"未掺杂和n掺杂石墨烯光子器件的不同响应","authors":"Wenrong Wang, Tie Li, Yuxiu Zhou, C. Liang, Yuelin Wang","doi":"10.1109/3M-NANO.2012.6472949","DOIUrl":null,"url":null,"abstract":"In this paper, undoped and N-doped few-layer graphene (FLG) films were synthesized by ambient pressure chemical vapor deposition. The different photoresponse between these two kinds of FLG based photonic devices was discussed. Photoconductive and photovoltaic responses were found respectively in undoped and N-doped FLG based photonic devices. Under IR lamp illumination in vacuum, the resistance changed in undoped FLG based device while photocurrent at zero voltage bias was found in N-doped FLG based device. The photoconductive effect was enhanced as the temperature decreased, on the contrary, the photocurrent was found to decrease as the temperature decreased from room temperature to 78K.","PeriodicalId":134364,"journal":{"name":"2012 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Different responses between undoped and N-doped few-layer graphene based photonic devices\",\"authors\":\"Wenrong Wang, Tie Li, Yuxiu Zhou, C. Liang, Yuelin Wang\",\"doi\":\"10.1109/3M-NANO.2012.6472949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, undoped and N-doped few-layer graphene (FLG) films were synthesized by ambient pressure chemical vapor deposition. The different photoresponse between these two kinds of FLG based photonic devices was discussed. Photoconductive and photovoltaic responses were found respectively in undoped and N-doped FLG based photonic devices. Under IR lamp illumination in vacuum, the resistance changed in undoped FLG based device while photocurrent at zero voltage bias was found in N-doped FLG based device. The photoconductive effect was enhanced as the temperature decreased, on the contrary, the photocurrent was found to decrease as the temperature decreased from room temperature to 78K.\",\"PeriodicalId\":134364,\"journal\":{\"name\":\"2012 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3M-NANO.2012.6472949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3M-NANO.2012.6472949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文采用常压化学气相沉积法制备了未掺杂和掺n的少层石墨烯(FLG)薄膜。讨论了这两种基于FLG的光子器件的不同光响应。在未掺杂和掺n的FLG基光子器件中分别发现了光导和光伏响应。在真空红外光照射下,未掺杂FLG器件的电阻发生变化,而掺n FLG器件的光电流为零电压偏置。光导效应随着温度的降低而增强,而光电流则随着温度从室温降低到78K而减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Different responses between undoped and N-doped few-layer graphene based photonic devices
In this paper, undoped and N-doped few-layer graphene (FLG) films were synthesized by ambient pressure chemical vapor deposition. The different photoresponse between these two kinds of FLG based photonic devices was discussed. Photoconductive and photovoltaic responses were found respectively in undoped and N-doped FLG based photonic devices. Under IR lamp illumination in vacuum, the resistance changed in undoped FLG based device while photocurrent at zero voltage bias was found in N-doped FLG based device. The photoconductive effect was enhanced as the temperature decreased, on the contrary, the photocurrent was found to decrease as the temperature decreased from room temperature to 78K.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信