基于V2X的GNSS双差概率协同位置估计

Paul Schwarzbach, Paula Tauscher, Albrecht Michler, O. Michler
{"title":"基于V2X的GNSS双差概率协同位置估计","authors":"Paul Schwarzbach, Paula Tauscher, Albrecht Michler, O. Michler","doi":"10.1109/ICL-GNSS.2019.8752742","DOIUrl":null,"url":null,"abstract":"Future applications for connected and automated driving depend on high-precision, lane selective positioning especially in dense urban environments. Estimating a user's position is often based on Global Navigation Satellite Systems (GNSS), but stand-alone GNSS positioning methods do not meet the necessary performance requirements. To achieve higher accuracies, additional sensor information is usually incorporated. Recent trends to enhance GNSS based positioning have focused on Cooperative Positioning (CP)approaches which allow the elimination of correlated GNSS error terms. The work presented in this paper provides a Dedicated Short Range Communication (DSRC)enhanced CP scheme using IEEE 802.11p and low-cost, multi-constellation GNSS receivers. A proposal for integrating GNSS raw data exchange through DSRC is given. An Extended Kalman Filter (EKF)performing GNSS Double Differencing (DD)is used as positioning algorithm and is compared to a conventional Least Squares Estimator (LSE). The proposed method is described in detail and validated in an experimental, dynamic measurement scenario.","PeriodicalId":119581,"journal":{"name":"2019 International Conference on Localization and GNSS (ICL-GNSS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"V2X based Probabilistic Cooperative Position Estimation Applying GNSS Double Differences\",\"authors\":\"Paul Schwarzbach, Paula Tauscher, Albrecht Michler, O. Michler\",\"doi\":\"10.1109/ICL-GNSS.2019.8752742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Future applications for connected and automated driving depend on high-precision, lane selective positioning especially in dense urban environments. Estimating a user's position is often based on Global Navigation Satellite Systems (GNSS), but stand-alone GNSS positioning methods do not meet the necessary performance requirements. To achieve higher accuracies, additional sensor information is usually incorporated. Recent trends to enhance GNSS based positioning have focused on Cooperative Positioning (CP)approaches which allow the elimination of correlated GNSS error terms. The work presented in this paper provides a Dedicated Short Range Communication (DSRC)enhanced CP scheme using IEEE 802.11p and low-cost, multi-constellation GNSS receivers. A proposal for integrating GNSS raw data exchange through DSRC is given. An Extended Kalman Filter (EKF)performing GNSS Double Differencing (DD)is used as positioning algorithm and is compared to a conventional Least Squares Estimator (LSE). The proposed method is described in detail and validated in an experimental, dynamic measurement scenario.\",\"PeriodicalId\":119581,\"journal\":{\"name\":\"2019 International Conference on Localization and GNSS (ICL-GNSS)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Localization and GNSS (ICL-GNSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICL-GNSS.2019.8752742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Localization and GNSS (ICL-GNSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICL-GNSS.2019.8752742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

未来联网和自动驾驶的应用依赖于高精度的车道选择定位,尤其是在人口密集的城市环境中。估计用户的位置通常基于全球导航卫星系统(GNSS),但独立的GNSS定位方法不能满足必要的性能要求。为了达到更高的精度,通常会加入额外的传感器信息。最近增强基于GNSS的定位的趋势集中在协同定位(CP)方法上,这种方法可以消除相关的GNSS误差项。本文提出的工作提供了一种使用IEEE 802.11p和低成本多星座GNSS接收器的专用短距离通信(DSRC)增强CP方案。提出了一种利用DSRC集成GNSS原始数据交换的方案。采用扩展卡尔曼滤波(EKF)实现GNSS双差分(DD)作为定位算法,并与传统的最小二乘估计(LSE)进行了比较。详细描述了该方法,并在实验动态测量场景中进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
V2X based Probabilistic Cooperative Position Estimation Applying GNSS Double Differences
Future applications for connected and automated driving depend on high-precision, lane selective positioning especially in dense urban environments. Estimating a user's position is often based on Global Navigation Satellite Systems (GNSS), but stand-alone GNSS positioning methods do not meet the necessary performance requirements. To achieve higher accuracies, additional sensor information is usually incorporated. Recent trends to enhance GNSS based positioning have focused on Cooperative Positioning (CP)approaches which allow the elimination of correlated GNSS error terms. The work presented in this paper provides a Dedicated Short Range Communication (DSRC)enhanced CP scheme using IEEE 802.11p and low-cost, multi-constellation GNSS receivers. A proposal for integrating GNSS raw data exchange through DSRC is given. An Extended Kalman Filter (EKF)performing GNSS Double Differencing (DD)is used as positioning algorithm and is compared to a conventional Least Squares Estimator (LSE). The proposed method is described in detail and validated in an experimental, dynamic measurement scenario.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信