PcapGAN:基于风格生成对抗网络的包捕获文件生成器

Baik Dowoo, Yujin Jung, Changhee Choi
{"title":"PcapGAN:基于风格生成对抗网络的包捕获文件生成器","authors":"Baik Dowoo, Yujin Jung, Changhee Choi","doi":"10.1109/ICMLA.2019.00191","DOIUrl":null,"url":null,"abstract":"After the advent of GAN technology, many varied models have been studied and applied to various fields such as image and audio. However, in the field of cyber data, which has the same issue of data shortage, the research on data augmentation is insufficient. To solve this problem, we propose PcapGAN that can augment pcap data, a kind of network data. The proposed model includes an encoder, a data generator, and a decoder. The encoder subdivides network data into four parts. The generator generates new data for each part of the data. The decoder combines the generated data into realistic network data. We demonstrate the similarity between the generated data and original data, and validation of the generated data by increased performance of intrusion detection algorithms.","PeriodicalId":436714,"journal":{"name":"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"PcapGAN: Packet Capture File Generator by Style-Based Generative Adversarial Networks\",\"authors\":\"Baik Dowoo, Yujin Jung, Changhee Choi\",\"doi\":\"10.1109/ICMLA.2019.00191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"After the advent of GAN technology, many varied models have been studied and applied to various fields such as image and audio. However, in the field of cyber data, which has the same issue of data shortage, the research on data augmentation is insufficient. To solve this problem, we propose PcapGAN that can augment pcap data, a kind of network data. The proposed model includes an encoder, a data generator, and a decoder. The encoder subdivides network data into four parts. The generator generates new data for each part of the data. The decoder combines the generated data into realistic network data. We demonstrate the similarity between the generated data and original data, and validation of the generated data by increased performance of intrusion detection algorithms.\",\"PeriodicalId\":436714,\"journal\":{\"name\":\"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2019.00191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2019.00191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

GAN技术出现后,许多不同的模型被研究并应用于图像和音频等各个领域。然而,在网络数据领域,同样存在数据不足的问题,对数据扩充的研究不足。为了解决这个问题,我们提出了PcapGAN,它可以增强pcap数据,这是一种网络数据。所提出的模型包括一个编码器、一个数据生成器和一个解码器。编码器将网络数据细分为四个部分。生成器为数据的每个部分生成新的数据。解码器将生成的数据合并为真实的网络数据。我们展示了生成数据与原始数据之间的相似性,并通过提高入侵检测算法的性能来验证生成数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PcapGAN: Packet Capture File Generator by Style-Based Generative Adversarial Networks
After the advent of GAN technology, many varied models have been studied and applied to various fields such as image and audio. However, in the field of cyber data, which has the same issue of data shortage, the research on data augmentation is insufficient. To solve this problem, we propose PcapGAN that can augment pcap data, a kind of network data. The proposed model includes an encoder, a data generator, and a decoder. The encoder subdivides network data into four parts. The generator generates new data for each part of the data. The decoder combines the generated data into realistic network data. We demonstrate the similarity between the generated data and original data, and validation of the generated data by increased performance of intrusion detection algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信