黎曼流形上全驱动机械系统的全局镇定:控制器结构

N. Chaturvedi, A. Bloch, N. McClamroch
{"title":"黎曼流形上全驱动机械系统的全局镇定:控制器结构","authors":"N. Chaturvedi, A. Bloch, N. McClamroch","doi":"10.1109/ACC.2006.1657279","DOIUrl":null,"url":null,"abstract":"We present a general intrinsic controller for stabilization of an arbitrary configuration of a fully actuated simple mechanical control system, evolving on a Riemannian manifold. We explicitly determine conditions for an error function on the configuration manifold and present a family of controllers. We show that under certain assumptions the controllers achieve stabilization with an almost global domain of attraction. The controllers do not cancel benign nonlinearities and can accommodate control saturation effects. Being intrinsic, we do not assume any coordinates. Finally, we illustrate our technique by explicitly deriving a control law that almost globally asymptotically stabilizes the inverted position of a spherical pendulum. Continuing this work by N. A. Chaturvedi, et al., we explicitly present error functions for many configuration manifolds encountered in engineering examples, and show how to design almost globally stabilizing controllers, under saturation effects. In this paper, we present the structure of such a controller and establish the properties of the resulting closed-loop","PeriodicalId":265903,"journal":{"name":"2006 American Control Conference","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Global stabilization of a fully actuated mechanical system on a Riemannian manifold: controller structure\",\"authors\":\"N. Chaturvedi, A. Bloch, N. McClamroch\",\"doi\":\"10.1109/ACC.2006.1657279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a general intrinsic controller for stabilization of an arbitrary configuration of a fully actuated simple mechanical control system, evolving on a Riemannian manifold. We explicitly determine conditions for an error function on the configuration manifold and present a family of controllers. We show that under certain assumptions the controllers achieve stabilization with an almost global domain of attraction. The controllers do not cancel benign nonlinearities and can accommodate control saturation effects. Being intrinsic, we do not assume any coordinates. Finally, we illustrate our technique by explicitly deriving a control law that almost globally asymptotically stabilizes the inverted position of a spherical pendulum. Continuing this work by N. A. Chaturvedi, et al., we explicitly present error functions for many configuration manifolds encountered in engineering examples, and show how to design almost globally stabilizing controllers, under saturation effects. In this paper, we present the structure of such a controller and establish the properties of the resulting closed-loop\",\"PeriodicalId\":265903,\"journal\":{\"name\":\"2006 American Control Conference\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2006.1657279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2006.1657279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

我们提出了一种通用的内在控制器,用于稳定在黎曼流形上演化的完全驱动简单机械控制系统的任意构形。我们显式地确定了构型流形上误差函数的条件,并给出了一类控制器。我们证明了在一定的假设下,控制器实现了具有几乎全局吸引域的镇定。控制器不消除良性非线性,并能适应控制饱和效应。作为内禀函数,我们不假设任何坐标。最后,我们通过显式地推导出一个几乎全局渐近稳定球摆倒立位置的控制律来说明我们的技术。继续n.a. Chaturvedi等人的工作,我们明确地给出了工程实例中遇到的许多配置流形的误差函数,并展示了如何在饱和效应下设计几乎全局稳定的控制器。在本文中,我们给出了这种控制器的结构,并建立了闭环的性质
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global stabilization of a fully actuated mechanical system on a Riemannian manifold: controller structure
We present a general intrinsic controller for stabilization of an arbitrary configuration of a fully actuated simple mechanical control system, evolving on a Riemannian manifold. We explicitly determine conditions for an error function on the configuration manifold and present a family of controllers. We show that under certain assumptions the controllers achieve stabilization with an almost global domain of attraction. The controllers do not cancel benign nonlinearities and can accommodate control saturation effects. Being intrinsic, we do not assume any coordinates. Finally, we illustrate our technique by explicitly deriving a control law that almost globally asymptotically stabilizes the inverted position of a spherical pendulum. Continuing this work by N. A. Chaturvedi, et al., we explicitly present error functions for many configuration manifolds encountered in engineering examples, and show how to design almost globally stabilizing controllers, under saturation effects. In this paper, we present the structure of such a controller and establish the properties of the resulting closed-loop
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信